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PREFACE

Volune 2 of this report describes the work CSDL has done to investigate
spacecraft control theory. Each of the six sections devoted to ACUSS reports
on 8 different aspect of that work.

Section 4, "Compensated Truncation of Modal Models for Desigrn of Control
Systems ;" describes the selection process necessary in large space: structure
(LSS) control-system design using a truncated finite-element model. The trun-
cated model must be selected properly and compensated explicitly for control
and observation spillover, so the control system designed through this method
can perform satisfactorily when implemented on the structure. Proper seleé-
tion requires correct classification of structural modes in*to "primary" and
"gecondary” modes. Explicit compensation for truncation includes: ‘placement
of actuators and sensors, synthesis of the actuator and sensor influences once
they are placed on the structure, and filtering of the actuator inputs and
sensor outputs,

Section 5, "Ensuring Full-Order Closed-Loop Stability ia the Reduced-
Order Design of Output Feedback Controllers," builds on the studies performed
during AC0SS 6 that establishaed various conditions necessary to ensure full-
order closed~loop asymptotic stability and robustness with veduced~order de-
sign of velocity and displacement output feedback controllers. Currently, the
work in this avea concentrates on how to apply such results. to large flexible
space structures and how to develop a reduced-srder design technique that will
ensure full-order closed-loop asymptotic stability. )

The study includes preliminary development of computer—aided design
software and acceleration output feedback control.

Section 6, "Design Freedom and the Implementation of Suboptimal Qutput
Feedback Control,” discusses the freedom inherent i1 design. The section
states that often this freedom is sacrificed purposely when simplifying as-
sumptions are made to avoid theoretical or computational difficulties. Since
it is difficult to consider this topic without referring to specific applica-
tions, the section uses controller design as an example where work is being
done to discover and exploit the freedom of choice in design. Ther, the sec-
tion uses suboptimal output feedback control as a case study which is relevant

to ACOSE development,

Section 7, "Stochastic Qutput Feedback Compensators for Distributed
Parameter Structural Models," presents recent progzess on the stochastic
output feedback design problem for distributed parameter plants. The results
presented are an extension of work done under the previous contract.

The concepts developed are general enough to apply to a wide variety of
fixed~form compensator design problems, and current studies are aimed at
specializing the results to the. optimal output feedback compensator design
problem, The procedure developed will be applied to the design of velacity
feedback controllers for a vibrating string. The results of this simplc test

vi
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should provide insight into the impact of various modeling assumptions on the
convergence of the design procedure described.

Section 8, "Large-Angle Spacecraft Slewing Maneuvers,” further .deVelops
work that was reported in the previous ACOSS contract. Specifically, the sec~
tion presents techniques for improving the optimal torque profiles by allowing
the solution process to determine the optimal terminal boundary conditions and
by developing . control-rate penalty technique for producing smooth control
profiles. Several example maneuvers are provided to demonstrate the practical
application and utility of the techniques presented.

Section 9, "Oxder Reduction by Identification—Some Analytical Re-
sults,” attempts to characterize counilrol designs that will guarantee stability
using # reduced-order model. This tind of design compromise is practiced
regularly, but no one has verified the validity of such an approach.

The least squares (LS) mechod is used in this analysis because it is a
relatively robust identification scheme and analytical expressions for order
reduction already exist for it. The results of the analysis show that a re-
duced order controller can be built using the LS method of identification. It
is planaed té demonstrate the practicality of this apprecach on Draper Model #2
in the near future.

vii
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COMPENSATZD TRUNCATION OF MODAL MODELS
FOR MESTSN OF CONTROL SYSTEMS

4.1  Introduction

Finite-element models of a large space structure are too latge for the
design of its control rystams, let alone implementation of "modem" control
systems in space. The model must be truncated substantially to reduce it to
a reasonably low order. A proper truncation requires proper structural-mode
classifications according to their influences on required performance and sen-
sor outputs and their responses to probable disturbances and actuator inputs.
The truncated modal models must explicitly bé compensated for their truncatiom
to prevent or reduce control spillover and observation spillover.

4.2  Reducéd-Order Modeling for Control-System Designs by Modal Truncation

In practice, not all structural modes that are '"molded" by a large
finite-element model are to be calculated because of the increasing ccmputa-
tional expense and inaccuracy. Yet, the number of modes commonly calculated
(using NASTRAN, for example) are very large for a typical large flexible space
structure. Only a very limited number of these calculated modes can be used
to form a reduced-order model required for design of the structure's control
systems, however, Some ideas for appropriate reduced-order modeling are being
formulated here at CSDL. The following (here and Section 4.3) is a preliminary
sketch.

Among the calculated modes, some are to be classified as "primary modes"
and some as "secondary modes". Those modes that will influence the specified
performance of the structure significantly (e.g., the line-of-sight error and
defocus) and/or will be influenced significantly by protable disturbances on
the structure (e.g., initial disturbances due to maneuvers, sinusoidal or ran-
dom disturbances caused by on-board equipments) are classified as primary modes.
Some primary modes are regarded as critical if a certain critical level is
exceeded. With respect to a configuration of actuators and sensors placed on
the structure, secondary modes are those nonprimary modes which either can be
influenced significantly by the actuation or can influence the sensing signifi-
cantly. Useful ranking techniques are being formulated and studied.

Naturally, those calculated modes which will not only be influenced sig-
nificantly by the probable disturbances but also influence the specified per-
formance significantly should be "modeled" (i.e., retained in the reduced-ordexr
model) for design of control systems. If possible, all other primary modes
should be modeled as well. On the other hand, it is obvious intuitively that
any calculated mode, be it primary or secondary, also should be modeled for de-
sign of control systams if it can be influenced strongly by the actuation or if
it can influence the sensinyg strongly. A recent research into the linear-
quadratlc regulator design technique for application to large space structures




has indicated that if strongly influential or strongiy irifluenced Secondary
modes are not modeled, spillover can become a very serious problem. To sum
up, some or all primary modes and certain secondary modes are to be modeled
for design of control systems; all 6ther modes are to beneglected.

4,3 Ccmpensation for Truncation

Any reduced-order model carefully derived as such is still a coarse
approximation of its original full-order model. The truncation must be ad-
justed and compensated first so that the.closed ®oop performance of thé result-
ing reduced-order mcdel (with the control syst s thus designed) can closely
represent the closed-loop performance of the rull-order model (with the same
control systems). In principle, actuators on the structure should be configured
so that influencés on modeled primary modes are much stronger than on.any other
calculated modes and that the number of secondary modes is reduced to a minimum.
Similarly, sensors also should be configured so that influences by modeled pri-
mary modes are much stronger than by any other calculated modes and that the
nurber of secondary modes is reduced further. The first step in compensating
for truncation is to adjust the configuration of the actuators and sensors
properly, since an initial intuitive configuration generally is not proper with
respect to such specific modeling requirements. It is ideal if 'control spill-
over and observation spillover caii be prevented by proper placement of a proper
number of actuators and sensors. The "placement step" in the three-step spill-
over reduction technique, which resulted from the ACOSS-4 study [4-1], can be
used to generate insights of ideal locations and directions for actuators and
sensors.

Br.cause of practical constraints on the number, type, location, and
direction of the actuators and sensors allowed on the structure, spillover may
not be prevented completely. Assume that actuators and sensors have been
placed on the structure and that the modeled modes for .control design have been
determined. Tnen, the second step- in the compensation is synthesizing the in-
fluences of those actuators and sensors properly so that spillover concerning
a judicious selection of secondary modes is prevented., The "synthesis step" of
the aforemeationed three-step technique is applicable. While ideas and methods
for selecting such secondary modes are to be formulated, a preliminary develop-
ment of ‘the synthesis techniques has begun [4-2] and is being completed (see
Section 4.4).

The third step in the compensation is to filter the actuator inputs and
the sensor outputs so that control spillover and observation spillover of other
unmodeled modes are reduced appropriately. Low-pass or band-stop filters aren
to be provided for proper attentuation of unwanted, spill-causing frequency
components in the inputs and outputs, as was considered as the "filtering step"
of the three-step spillover reduction technique. It is logical that control
systems should be designed with these filters considered as integral parts of
the reduced-order model, as was suggested earlier [4-1]. On the other hand, it
also sounds reasonable intuitively that posterior attachment of low-pass filters
0o a control system which 1s designed using only the unfiltered reduced-order
mocdel could improve the full-order closed-loop performance of the control system.
This common intuition 1is being examined (see Section 4.5).
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4.4 A Completion of the Synthesis

Preventing control and observation spillover by 4sing synthesizers has
béen discussed in References 4-1 and 4-2. A completion of the synthesis pro-
cess is.discussed in this ‘section.

Once an adequate set of seconddry modes has been determined to prevent
spillover, the synthesizer, I', can be computed from Reference 4-2, Eq. (5-15).

r o= q,f (4-1)

where the synthesizer I' is'm x m’, Q2 ismx (mMm-p)and ' is (m - p) x m'.

Here m is the number of (physical) actuators, m' is the number of columns
chosen for T' and represents the number of synthetic actuators, and p is the

rank of the control influence matrix ¢§BF of such secondary modes.

The elements of matrix T are freé parameters. The number m' of synthe-
tic actuators can be arbitrary, but, without being redundant, m ~ p can be con~
sidered an upper limit. To exercise the complete synthesis process, m' is

chosen to be unity. So I is a vector of free parameters. Consider choosing r
so that the synthesized primary control influences take on some desirable values
(see Reference 4-2, Eq. (5-16)). Of course, Reference 4-2, Eq. (5-8) will al-

ways hold no matter what the choice for I is. Here I will be chosen to make the
elements of the synthesized primary control influence vector all 1l's, if possi-
ble. The relevant equation (Reference 4-2, Eq. (5-16)) is

T - '
Bl = VT (4-2)

where the primary control influence matrix ¢£BF is p X m, p being the number of
primary modes, and V2 is p x (m - p). Note, however, that p is usually very much
greater than m - p, so in general one cannot solve Eq. (4-2) for T such that
w§ g Gr-son the desired values exactly.

Consider using a linear least squares technique for finding I' so that the

T 4 . a .

error ||(¢PBFr)desired V,F|| is minimized. An Internationsl Mathematical and
Statistical Libraries (IMSL) linear least-squares subroutine is used to determine
a minimizing r. A synthesizer T' is then obtained using Eq. (4-1).

The complete synthesis approach to spillover prevention has been applied
to Models 1 and 2. The results of post-multiplying the entire control influ-

ence matrix (secondary, primary, as well as tertiary parts) of both models are
presented in the foliowing.
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Figure 4-1 illustrates the results for the example considered in Sec-
tion 5.5.1 of Reference 4-2., Recall that the desired values for the elements
of the synthesized primary control influence vector are all 1's. Here Modes 1
and 2 yielded poor synthesized control influence, while Modes 4 and 5 synthe-
sized quite well. Interestingly, Modes 1 and 2 also lave becn shown to have a
poor "modal degree of controllability". The synthesized tettiarv influences
wera clearly not of the order of the secondary control influénces (as was de-
sired), but all were less than l.4. These are indications of either poor
placement of actuators or poor selection of secondary modes for spillover pre-
vention.

0.27755575615628910~16
0.26653345369372350-15{ T .
0.4163336342344337-16 ( PSBE
<0.1337778780781426D-15
0.1633203111612015D+00
~0.05001859547706330-01 { +To
0.11216914064031870401 ( “PCF
0.09727293911733600400
0.3315621655720254D400
0.1303922005184048D+01 r
0.61559670780395010+00 ( PTBF
0.27491833365850130400

Figure 4-1. Synthesized control influence
matrix for Model 1.

This same synthesizer, I', was used to post multiply the control influ-
ence matrix of the perturbed Model i. The result is shown by Figure 4-2, where

¢ denotes the mode-shape matrix of the perturbed model. Some reduction was
achieved in the secondary influences though the reduction was not uniform or
adequate. The problem with poor placement or poor selection was compounded by
parameter variation.

0.584594350D-02
0.9954364400-01
0.10154955604+00 }

57
§loer

0.,3550066930-04 }
S

~0,645081959D-01
0.109292306D+01
0.701211710D4+00
0.636934502D100 }

31
&8 T

0.1412360800+01
0.5854925960+00
0.223899504D+00

5T
ANy

Figure 4-2, Synthesized cortrol influence
matri: for perturbed Mode. 1.

This same synthesis process was also applied to Model 2 where the 78 x 19
elastic control influence matrix was to be synthesized, The synthesizer was

4
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computed from the results of the second synthesizer example in Reference 4-2,
Section 5.5.2. The synthesized control i:ufluence matrix for Model 2 is shown
in Figure 4-3. Notice that again some of the primary modes yielded synthesized
values close tb 1 while others did not. A number of the tertiary modes synthe-
sized to small values as was desired. Note that the secondary modes chosen for
spillover\prevgntion vere originally selected based only on knowledge of the

ﬁ& lowest frequency elastic modes and that the selection was based on a high
model degree of controliability". In the synthesized secondary partition, the
third mode (mode nine) was several orders of magnitude above the other secondary
modes. This is because mode nine corresponds to the row where the potential
pivots were too small to eliminate in the secondary partition of the control in-

fluence matrix (see Referencé 4-2, Figure 5-3).

-0.56853344605809790-16

0.10859400328853810-16
0.50487650986766380-06
0.55511151231257830-16
~0.20556473190325160-15
0.140404161336872060~15
0.90205620750793970-16
6,77195154680967920+16
0.10581813203458520-15
0.47046327472671980-17
0.25641381379282180-16
«0.31770088269140670-17
0.67654215563095480-16
0.22741114098103850~17
-0.49385408956714730-16
~0.62670415652019710-18
0.13030754860560160-16

~0,66355441463864340-04
~0.91650539479413672~04
0.88146065284821370-04
0.17134221161214600-01
0.21425075226766790-03
~0,11176832998884808D0-02
0.1081579439235276D~03

0.14056562033595170+00

0.39609583433409310-03
-0.28481079329020960-92
0.5598448294659406D-01
0.74861138570800580-01
0.10613944472106150+01
0.12763570757435760+01
=0,22809256464196020+00
0.32023639482424540400
0.66156169496378750+00

Figure 4~3. Synthesized control influence matrix for
Model 2.

T
®¢Bel

T
¢PBFF

0.6987917946233904D-05
0.82825521097245640-04
0.84415602961035580-05
«0.21549715789466210-13
0.10320388668420850-02
~0.18358399061835150-13
~0.61527706254226914D-14
0.3196194546443228D~04
0.15886816432557170~03
0.995196363170259280+14
«~0.14012405454372860+01
~0,40843852846461010+00
«0.66295932243994120¢00
0.90568049352066150100
<0,92852865443553160-03
«0.8456996521326744D+00
«0.1426770230401454D+00
-0.3183143652266772D+00
~0.4951991917024904D+400
0.18154617373606430+00
«0.10373808703545270+401
-0.4527032617627164D400
0.43%89688530672810+00
0.945008754593004900+00
0.27591205733934130-01
-0.39589120212958600400
0.93318180729178539+00
«9.46650381025905800400
0.74077197056352230-13
0.20569142380674449D-05
-0.118%69584606033670+01
-0,7489333016306520D+400
0,2520258094045664D-1¢
~0.438541.8008418666D-05
0.2856200163279595040)
-0.9059455704550544D401
«0.2431893203396738D402
0.7530437084810297040%
-0.27439588971224770401
-0,28592104092137920401
«0.94127130271.942650+0)
0.21074405042789800+02
0.12537135442541550-01
0.2390526826263091D401

T
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4.5 Filters.for Spillover Reduction

The reduction of spillover by filtering the actuator inputs and sensor -
outputs ~ppropriately was originally discussed in [4-1]. The general effects
of the filters on the transient and stcady-state responses have been investi-
gated and are reported briefly here. Some preliminary results on posterior
addition of filters to Model 1 are discussed also.

One may consider using a filter to reduce control spillover. Then one
is concerned with the effect of the filter on steady-state response and transient
response with a general sinusoidal input to a very lightly damped system. Two
simple filters are being examined: first- and second-order low-pass filters of
the following kind

1
s+ 1

Gc(s) = (4-3)

1
G (s) = 55— (4-4)
¢ 52 + ds + c2

The time response (magnitude and phase angle) of a mode tc an input
where filtering is included has been determined. The symbol manipulation
language, MACSYMA, was useful for some of this work. The input-frequency-
dependent effect of the filters on the steady-state responses is as well known.
On the other hand, the filters reduce the magnitude and phase angle of the
transient response of each mode uniformly for all input frequencies. The re-
duction, of course, varies with the natural frequency of the mode.

The common intuition of posterior attachment of low-pass filters to
vibration controllers was studied as a means of reducing control spillover to
high-frequency modes using Model 1. A modal dashpot design of velocity output
feedback controllers (based on critical Modes 1, 2, 4, and 5) was considered be-
cause of its commonly recognized robustness in closed-loop stability [4-2],
[4-3]. CSDL found that adding a second-order low-pass filter, with its natural
frequency lying between Modes 5 and 6, would destabilize the 12-mode closed-
loop system; intuitively such a filter was reasonable for reducing control spill-
over to Modes 6 and beyond. It was found also that adding a filter with a much
higher natural frequency (e.g., between Modes 8 and 9) wculd not cause closed-
loop stability.

Specifically, the damping ratio to be achieved for the primary modes
with this output feedback controller is 0.1. Two cases are considered. In
the first case, the feedback gain matrix is

T, .{ it
G, = —(¢PBF) (zzPQP)(cvc»P) (4-5)
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and the control u is

u = Gy (4-6)

The six actuators and the six sensors are colocated, respectively. In the second
case, th2 six (physical) actuators are combined into four synthetic actuators so
that all spillover is prevented to modes three and six. The synthesizer I'; =hich
is (6 x 4), is chosen so that the synthesized primary-mode contrel influence

T, .
¢PBF1

is the identity matrix. The six (physical) sensors are also synthesized in the
same way but "dualized". So, for the four pairs of synthetic actuators and
synthetic sensors, the feedback gain simply becomes

GV = -ZZPQP 4-7)

The intuitively positive effects of filtering both actuator inputs and sensor
outputs (toward reducing closed-loop spillover and thus allowirg the damping
ratio to be achieved by the primary modes) will be demonstrated in a later
report.

For now, the potentially negative effects of filter insertion on system
stability is investigated. (Low-pass filters also could represent the dynamics
of the actuators.) The first-order filter above was considered for these values
of t+ 0.05, 0.222, 0.25, 0.2, 1,0, and 10. The system remained stabie for this
range of T in both cases, and the closed-loop poles of the 12-mode mudel (plus
filters) moved toward the jw axis as 7 increased. The stability of the system
was not preserved when the, second-order filter was inserted. Two values of ¢
were chosen (c = 4 and ¢ = 6), and d was chosen to make the filter critically
damped. When c was 4, the closed-loop system became unstable in both cases.
With ¢ = 6, however, the system remained stable in both cases.

4,6 Conclusion

Truncated modal models of a large space structure need to be selected
properly and compensated explicitly for control spillover and observation
spillover, so that the control systems thereby designed can perform satis-
factorily when implemented on the structure., Proper selection requires proper
classification of structural modes into "primary" and "secondary" modes. Ex-
piicit compensation for truncation includes




% (1) Proper placement of actuators and sensors.

(2) Proper synthesis of the influences of the actuators and .the
sensors once they are placed on the structure.

(3 Proper filtering of the actuator inputs and sensor outputs.
Direct applications of state-of-the-art design.techniqugs will then become
possible, and the resulting designs more effective in closed~loop performance.
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SECTION 5

'ENSURING FULL-ORDER CLOSED-LOOP STABILITY IN THE
REDUCED-ORDER DESIGN OF QUTPUT FEEDBACK CONTROLLERS

5.1 Introduction

As a result of ACOSS-6 studies, CSDL has established various conditions
for ensuring full-order closed-loop asymptotic stability and robustness with
reduced-order design of velocity and displacement output feedback controllers;
for details, see [5-1] Section 3, The emphasis of the current studies is to
apply such results to large flexible space structures and develop a reduced-
order design technique that will ensure full-order closed~loop asymptotic
stability.

The study includes a preliminary development of computer-aided design
software. Acceleration output feedback control is included in this develop-
ment also. The full-oruvr closed-loop asymptotic stability conditions are
therefore extended to cover the reduced-order design of acceleration output
feedback controllers.,

Some important theoretical or technical issues that need to be ad-
dressed in depth in later work are discussed briefly at the end of this
section,

5.2 Problem Formulation

Consider the following finite~element representation of large space
structures

Mg+ Dy +Kqg = f (5-1)

where vector q denotes the L generalized coordinates, vector f the L genera-
lized forces; matrices M, D, and K denote the mass (or inertia), the damping,
and the stiffness, respectively. As usual, M is real, symmetlric, and positive
definite, while both D and K are real, symmetric, and nonnegative definite.
Let there be m force (or torque) actuatoxs for control of structural mitions

f = BFu (5-2)

where vector u denotes the m actuator inputs, one for each actuator, and L x m
matrix BF denotes the actuator influence coefficients. Also let there be zA

acceleration sensors, 2V velocity sensors, and QD displacement sensors for

measurement of structural motions

Yo = Cp

yD ™ CDq (5""3)




where vector Ya denotes the QA acceleration-sensor outpits, vector Yy the 2v
velocity-sensor outputs, and Yp the QD displacement-sensor -outputs; the zA x

x L matrix CD(denote the influence

L matrix CA’ the £, x L matrix,Cv, and the £

\') D
coefficients of the acceleration, velocity, and displacement sensors, respec-

tively.

Now, consider the following form of output feedback control

U = Oy
by = Gy
uy = =Gpyp (5-4)

where the m % %y matrix GA’ the m x Ly matrix GV’ and ithe m x Lp matrix GD

denote the feedback gains,

Partitioning the actuator-influence matrix appropriately yields the
following expression of tbe control force applied to the structure

alBy !BD] Uy | = Byuy + Byuy + Bruy (5-5)

“p

Substituting Eq. (5-2) through (5-4) in Eq. (5~1) yields the following =xpression
for the closed-loop system

M+P g+ D+ BvaCv)q + (K + BDGDCD)q = 0 (5-6)

a%aCa
It follows that this output-feedback control results in an alteration of the

mass, damping, and stiffness pgoperties of the structure. The feedback gains
GA’ GV’ and GD can be designed using any technique for satisfying any speci-

fied performance requirements, but the asymptotic stability of the resulting
closed~loop system must be ensured, particularly for large precision spacz
atructures,

A commen practical condition for asymptotic stability is that the aug-
mented mass matrix (M + BAGACA)’ the augmented damping matrix (D + BVGVCV)’
n¢pCp
Symmetry of both ti.s mass matrix (M + ByG6 CA) and the stiffness matrix (K +

and the augmented stiffness matrix (K 4+ B } are all positive definite.

BDGDCD) are always assumed in the litersture. Such positive-definite condi-

tions are not satisfied easily for large space gtructures since matrix preducts

BAGACA’ BvaCv, and BDGDCD practically can never be made positive defiaite.

Moreover, the design of control systems for large space structures commonly is

1¢
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based on, not the whole model, Eq. (5-1), but a truncated version. Thus,
; full-ordeér closed-loop asymptotic stability is even more difficult to ensure
I without any special efforts in the reduced-order design.

Expressed in modal coordinates, the full-order model, Eq. (5~1) and
(5-3), become

ir n4An+En = O0F -7
Yy = CA¢;
yy = Cv¢ﬁ
] yp = Cpén (5-8)
f; where
o = q (5-9)
: oTMe = 1 (5-10)
’i ¥Tpe = & (5-11)
E oTRe = 1 (5-12)

3 To enable the design of a control system, this modal model is commonly truncated
2 to reduce its order. Let the undamped natural modes retained be denoted by
subscipt M Then, the design of feedback gains GA’ GV’ and GD is based only

on the following reduced-order model

. . T
x 5-13
"y + AMnM + ZMnM ¢Mf ( )
3 y, = C,oMM
g } .
¥ Yy CyPu™y
= 5-14
p = Gl (5-14)

&
5.
48
P
s
e
Zad
.
3
b

The problem ic to ensure that the resulting full-order closed~loop sys-
tem, given by Eq. (5-6) or equivalently by Eq. (5-2), (5-4), (5~5), and (5-8)

combined with Eq. (5-7), is asymptotically stable while the feedback gains GA’

GV’ and GD are being designed using a reduced-order model such as given by

Eq. (5-13) and (5-14). For comments on the underlying difficulties in ensuring
full-order closed-loop asymptotic stability with reduced-order design of velo-
city and displacement output feedback control, see Reference 5-1, Section 3.
Those comments also apply to reduced-ordar design of acceleration output feed-
back control.

11
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5.3 Full-Order Closed-Loop Asymptotic Stability.Conditions °

} The stability conditions previously established for reduced-order de-
sign of velocity and displacement output feedback can easily be extended to
cover the desigh of acceleration output feedback. Let the modeled modes
contain those that can influence the specified performance (say,.line-of-sight
accuracy) of the structure and/or the sensor outputs significantly and those
that can be influenced significantly by disturbance on the structure and/or
the actuator inputs. Assume without loss of generality that all rigid modes
are modeled modes and that all unmodeled modes are elastic modes, each of
which has some positive amount of inherent damping. Following the same
developmernt as {5-1] Seé¢tion 3.3, the following conditions can he stated.

The full-order closed-loop system given by Kq. (5-8) is asymptotically
stable if the following three conditions are all satisfied.
(1) The acceleration output feedback gain GA ensures that the product

BAGACA is both symmetric and nonnegative definite.
T

(2) The velocity output feedback gain Gv ensures that AM + @MBVGVCVOM
is positive definite and BvaCv is nonnegative definite,

(3) The displacement output feedback gain GD ensures that
T :
ZM + QMBDGDCDdiM is positive definite and BDGDCD is both sym-

metric and nonnegative definite.

A few remarks are necessary. Condition (1) ensures both the symmetry
and the positive definiteness of the augmented mass matvix (M + BAQACA).

Condition (2) ensures the positive definiteness of the augmented damping matrix
(D + BVGVCV). Condition (3) ensures both the symmetry and the positive de-

finiteness of the augmented stiffness matrix (K + BDGDCD)'

5.4 Principle of the Reduced-Order Design Technique

Condition {3) takes on the most general form and is the strongest among
the three conditions. The discussions on the design technique will focus on
ensuring Condition (3) in the reduced-order design of displacement output feed-
back control. Thus, the following reduced~order design technique also can be
used or adapted for reduced-order design of velocity and acceleratjon output

feedback control.
*
Step 1: Let Iy be a nonnegative definite matrix such that

d ¢+ (5-15)

Iy mt Iy

is a positive definite matrix representing desirable closed-loop stiff-
ness of the modeled modes, and set

T *
QMBDGDCDQM = EM (5-16)

12
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(5]

This ensures that ZM + @MB G.C.b, is positive definite and BDGDCD

T
DDDM

is nonnegarive definite.

Step 2: Le% the feedback gain GD be determined as a product of .three

matrices:

6 = LySpp

To ensure the symmetry of BDGDCD, set

T
Bplp = (RpCp)

*
and restrict ZM tc be a symmetric matrix.

(5-17)

(5-18)

Step 3: Solve for LD’ SD’ and RD from the following matrix equations

.5 Discussions

Matrix Eq.

[—B | cT] FEP =0
D;y D

L%

T -
BplpSpRploty = Iy

(5-19) can be rewritten as

AX = 0

with A representing the known part

and X the unknown part

(5-19)

(5-20)

(5-21)

It is now of the same form as the one in the synthesis of actuatocr influences

for prevention of control spillover.

The analytical expression of the gen-

eral closed-form solution already has been given in Eq. (2-30) and (2-31) of

Reference 5-2, Section 2, and that expression can be used directly.

A pre-

liminary computer program, similar to that used in the synthesis of actuator
influences, has been coded in PL/I; a Gaussian elimination method is used.

13
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Similarly, Eq. (5-20} can be vewritten as.

AXB = C (5-22)

*
D¢M), and ZM

respactively while X represents the unknown part SD. Note that LD and RD

with A, B, and C representing the known parts (¢§BDLD), (RDC

become known if Eq. (5-19) is solved first. The analytical expression of
the general closcd-form solution recently reported in Reference 5-1, Sec-
tion 3.7.5 can also be used directly. A preliminary computer program using
a Gaussian elimination method has also been coded.

A preliminary combination of these two programs to execute Step 3 of
the design technique has been completed and debugged with M-4el No. 1. To
further develop this design technique, sevevral theoretical or technical issues
need to be addressed in depth. The general solution for Eq. (5-19) contains
a matrix of firae parameters. A first issue to be addressed is how to handle
such free paraweters: Is it useful at all to retain the free parameters in
matrices LD and RD? What are the tradeoffs if the free parameters are passed
over to matrix SD?

Both Eq. (5-19) and (5-20) require performing column and row operations
on the known matrices. A second issue is the impact of different operation
selections on the feedback gains.

At the end of Step 3, Condition(3) is ensured, but the solution SD’
and hence the feedback gain GD’ is in general a function of free parameters in

the general solution of Eq. (5-20). The use of a general solution (instead of
a pseudoinverse solution) is advantageous because it preserves the available
free parameters. A third issue is how to use these free parameters to satisfy
specified performance after the appropriate stability conditions have been
ensured.

The design technique presented in this section does not require collo-
cation of actuators with sensors or the symmetry of feedback gain matrix GD’
unlike common practice. Positive definiteness of gain GD is not required
either,

When this reduced-order design technique and the appropriate computer-
aided design software are developed satisfactorily with respect to Model No. I,
CSDL will demonstrate their application to the much more complex Model No. 2.

LIST OF REFERENCES
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SECTION 6

DESIGN FXEEDOM AND THE IMPLEMENTATION
OF SUBOPTIMAL GUTPUT FEEDBACK CONTROL

6.1 Introduction

The principal focus in this section is on the notion of recognizing,
characterizing, and exploiting to advantage the freedom of choice inherently
available in design. Although the specifics discussed relate to the design of
feedback controllers for linear multivariable systems, such a notion clearly
has much wider applicabiity. It is unfortunate that potential freedom in the
design process sometimes remains unrecognized, much lik2 treasure hidden in a
field waiting to be discovered. More often, perhaps, suca freedom ie pur-
posely sacrificed by making simplifying assumptions to avoid desiiug with
certain theoretical or computational difficulties that appe.r unpleasant and
seemingly insurmountable. However, when sufficient motivation exists, the
effort expended in facing the difficulties squarely often provides insight
that leads to a much deeper understanding of the design problem and which
reveals a wider class of possible solutions [6~1]. Such motivaticn cextainv
exists in designing active feedback controllers for vibration suppression ia
large flexible space structures when the precision required n pointing and
tracking with the structure exceeds the present capability. Performanc
improvements associated with tapping previcusly unexploited design freedow
could be significant,

The potential for design freedom often arises in connection with singu-
larities that are allowed to remain in the mathematical model of the system
being studied. Hence, it is difficult to make ideas on this matter precise
apart from specific applications. In Section 6.2, a number of specific recent
attempts to discover and exploit the freedom of choice in controller design
are discussed to bring out some important general ideas. Special attention is
then given, in Section 6.3, to a particular design approach (suboptimal output
feedback control [6-2]) that has relevance in large flexible structure appli-
cations which has been enhanced significantly by exposing previously hidden
potential for design freedom. The current status of eiforts to exploit this
freedom to advantage is described.

6.2 Design Freedom

For clarity of discussion, some notation is developed briefly. Consider
the standard modal representation for a flexible structure

2

; + 220N + Q% = (oTBF)u

y = (CP¢)n+ (cva)n

15
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where

T . .
n = (nl,...,nn) is the vector of modal coordinates

: n x n is the diagonal matrix containing the modal
frequencies Wygeesstd
n

Z; n x n is the diagonal matrix containing the modal
damping ratios El,...,En associated with

inherent material damping

®: n x n is the matrix with columns that are the struc-

tural mode shapes ¢1,...,¢n

B.: n xm is the static gain matrix of the actuators

driven by the control u = (u,,...,u )T
1 m

Cp: £ x n and Gyt £ x n are the static gain matrices of the displace-
ment and rate sensors, respectively

y = (yl,...,yz)T is the system output

Superscript "T" denotes matvix transpose

Several recent investigations into controller design for large flexible
space structures have uncovered substantial potential for improved system per=-
formance through design freedom whick was made available by relaxing restric~

tions on the rank of certain parameter matrices formed from ¢TB and (CP,CV)O

F
through mode selection., These studies are described as follows:

(1) Study of a suboptimal output feedback approach [6-2) revealed
that the equation for the feedback gain matrix has an infinite
number of exact solutions when a reduced order observation matrix

: associated with (CP,CV)¢ has less than full rank [6-3]., Specific

indications of potential benefits to be gained by exploiting this
nonuniqueness were given,

(2) A study of techniques for alleviating control and observation
spillover associated with reduced-order comtrollers [6-4] through
the placement of actuators or the synthesis of their influences
revealed that spillover to certain classes of modes can be pre-

vented if a reduced-order matrix associated with ¢TBF is allowed

to have less than full column rank,

16
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3) In a study of damping and stiffness augmentation through output
feedback [6-5], it was observed that the equation for the feed-
back gain matrix that realizes prespecified closed-loop damping
(A) and stiffness (K) matrices has an infinite number of solu-
tions when reduced-order matrices associated with ¢TBF and
(CP,CV)@ are allowed to have less than full rank. Specific indi-

cations of potential benefits from such freedom of choice are
given. The relaxation of the usual assumptions on the closed-
loop matrices A and K also contxibutes to the freedom of choice.

Similar investigations of freedom in estimator design have been made [6-6].

Freedom of choice in design can be of the most value when particular as-
pects of it can be characterized and systematic procedures for effectively
explniting it can be developed. This point is worth clarifying by describing
a specific and significant result of this nature in some detail. Counsider the
capabilities of full-state feedback in a linear time-invariant multivariable
system

X = Ax + Bu; u=Kx+Ln (6-1)
y = Cx (6-2)
wl.ere
. T
x = (xl, ..,xn)
u = (ul,. .,um)T
- T
y = ypeeny,)

(n represents an external input). The property of controllability [6~7] has
been characterized in the frequency domain as the zbility to find a matrix K
such that the poles of the closed-loop system matrix A + BK formed from

Eq. (6~1) coincide with an arbitrary preassigned symmetric set of complex
numbers [6-8]. It is easy to show, using the companion canonical form [6-9]
for controllable systems, that if there is only ore input (m = 1), specifica-
tion of all the (n) closed-loop eigenvalues determines the (n) elements of an
associated matrix K uniquely. This uniqueness disappears when more than one
input is present, which leaves open the pcssibility of choosing the (nm)
elements of the feedback gain matrix to achieve desirable properties of the
closed~loop system beyond the assignment of eigenvalues. The problem of
characterizing this freedom of choice was recognized us a significant cpen
question quite recently [(6-10],

17
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A very elegant characterization of this freedom was provided subsequently
by Moore [6-11] and Klein [6-12] (an amplified version of [6-11] can be found
in [6-13]). In essence, this characterization states that the frcedom beyond
the ability to assign eigenvalues is the gbility to assign associated eigen~
vectors. Although such eigenvectors cannot be selected arbitrarily, the re-
strictions upon the class from which the eigenvectors must be taken are quite
mild. A precise statement of this result (Theorem 6-2) is given in Section

6‘6.10

Once such s characterization is established, attention is focused ou dis-~
covering the most effective means for exploiting the indicated freedom. Whereas
the assignment of eigenvalues determines the speed (i.e., natural frequencies,
damping ratios) of the closed-loop dynamics, the assignment of eigenvectors de~
termines the shape of those dynamics. Expressing the general solution for the
closed~loop dynamics in spectral form which explicitly displays the eigenvalues
and eigenvectors provides some insight into possible approaches for selecting
candidate eigenvectors [6-13]. However, considerable ingenuity is needed to
find the most advantageous selections; a number of different approaches have
been proposed [6~11, 6-12, 6~13, 6-14, 6~15, 6~16, 6~17], and several of them
proceed so as to reduce the sensitivity of the eigenvalues: and eigenvectors to
perturbations in the closed~loop system matrix. Once a set of eigenvectors
satisfying thie requirements of Theorem 6~2 has been selected, the corresponding
gain matrix can be determined readily by following the constructive procedure
given in the proof of the theorem [6-13]. 1In Section 6.6.2, a few detailed re-
marks regarding the art of selecting appropriate eigenvectors are given.

6.3 Case Study: Numerical Implementaticn of Suboptimal Output Feedback Con-
trol

6.3.1 Background

When the Kosut approach to suboptimal output feedback control [6-2) was
reexamined recent:ly to investigate its applicability to reduced-order control-
ler design for flexible spacecraft [6-18], the potential for substantial free-
dom of choice in gain matrix selection came to light. Theoretical development
characterizing this freedom and examples illustrating the potential for ex-
ploiting this freedom are given in [6-3]. The essential observation that
generates the added design freedom is the algebraic consistency of a linear
equation for determining the output feedback gain matrix, even when the coeffi-
cient matrix is rank-deficient., In such cases (i.e., rank deficiency), a whole
family of exact solutions for the feedback gain matrix exists; parameterization
of this family may often be selected to improve the performance of the full-
order system which is driven by a reduced-order controller.

However, for this design approach to be feasible with large-order sys-
tems, a reliable computational procedure for dealing with rank-deficient linear
algebraic equations is needed. Solution of such equations is a very delicate
numerica' problem; useless results are virtually certain if traditional solu-
tion procedures (e.g., Gaussian elimination) are used [6-19; pp. 200-218]. In
this section, a mature version of a computational procedure initially outlined
in [6-20] for obtaining the gemeral solution of rank-deficient linear algebraic
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equations is presented. This procedure takes advantage of the special struc-
ture associated with the underlying controller design problem and expresses
the solution in a form particularly appropriate for using the design freedom
inherent in the extended Kosut approach [6-21].

It should be observed that the difficulty in solving rank-deficient
linear equations is not algebraic; the theory is classical [6-22; pp. 73-109].
Rather, the difficulty is due to inevitable rounding errors that occur in
actual computations which make the numerical determination of matrix rank
extremely difficult [6-23), Considerable work has been done on this problem,
but very little of it has been reported in standard numerical analysis text-
books [6-24, 6-25]. Attempts to extend Gaussian elimination methods to treat
rank-deficient equations have not proved very successful, especially when an
accurate determination of rank is required [6-26, 6-27). Considerably more
success has accompanied development of iterative solution techniques, most of
which are designed specifically for use in problems with sparse coefficient
matrices [6-28, 6-29, 6-30, 6-31, 6-32]. The most successful development to
date has been a direct (i.e., noniterative) technique based on an algorithm of
Golub and Kahan [6-33]) that employs a decomposition of the coefficient matrix
to display its singular values [6-~34]. This technique has been published as
an ALGOL procedure [6=~35] and incorporated into widely available robust mathe-
matical software [6~36]. It is widely recognized as the only reliable ap-
proach to problems in which an accurate determination of numerical rank is
essential [6-23, 6-34]. A precise development of what "numerical rank" really
means has appeared recently [6-37],

For the present application, precise determination of the rank of the
coefficient matrix in the gain equation is very important since the number of
free parameters in the general solution for the gain matrix is proportional to
the rank deficiency of the coefficient matrix [6~3]. Moreover, the structure
of the underlying control design problem suggests that the coefficient matrix
generally will be dense rather than sparse. Therefore, the procedure for
numerical solution of the Kosut gain equation is built around the singular
value decomposition.

6.3.2 Problem Statement

The algebraic equation to be svlved numerically has the form
AX = B (6-3)

With reference to the underlying problem of reduced-order controller design
[6-3], matrices A: £ x £ and B: £ X m have the structure

*
, BB = F ch (6-4)
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where

CC: £ x 2N is the state-to-output observation matrix in a reduced—-order
plant having 2N states, m inputs, and £ outputs

P: 2N x 2N is the symmetric positive-definite solution of a Liapunov
matrix equation associated with the stable closed-loop

system matrix of a reference plant of order 2N

* . . . .
F:mx 2 is the full-state feedback gain matrix in that reference
plant

The gain matrix to be determined is G = X mox L.

It Yollows directly from the structure of A and B (Eq. (6-3) and (6-4))
that the gain equation, Eq. (6-3), is always algebraically consistent, regard-
less of the rank of A (= rank (CC)) (6-2]. 1n other words, the best least-

squares approximation to a solution of .q. (6-3) is, in fact, an exact solu-
tion. When the coefficient matrix A is rank deficient, say rank (A) = r < 2,
the general solution of Eq. (6-3) contains m * (2 -~ r) arbitrary parameters
{6-3]. The problem treated is to develop a procedure for computing the gen-
eral solution to Eq. (6-3). The procedure is designed so that the free param-
eters are displayed explicitly in a manner that facilitates their selection
for improving the performance of the full-order (finite-dimensional) plant
driven by the reduced-order controller in the underlying control design prob-
lem, Before this is described, a few essential facts about generaliz-d in-
verses and the singular value decomposition are reviewed.

6.4 Some Facts from l.inear Algebra

6.4.1 Generalized lav:i rses

A matrix is invertible if it is square and nonsingular, Otherwise, in
general, some restriction of its domain (viewing the matrix as a mapping) is
required before any property of invertibility can be achieved. The notion of
a generalized inverse makes the appropriate restrictions and the corresponding

invertibility properties precise.

The Moore-Penrose inverse of a real matrix A: y x Vv is the unique solu-
tion of the equations [6-38, 6-39)

AXA » A (6-5)
XAX = X (6-6)
ax)T = ax (6-7)
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(xA)T = XA (6-8)

and is denoted by Atz v x u, It is identical with the usual inverse of A when
A is square and nonsingular., A key to understanding this notion is the geo-

metric interpretation of the composite maps AfA and AAf as projections. 1In
particular [6-38]

ATA is a projection onto R(At) along N(A), (6-9)

m'is a projection onto R(A) along N(Af)

where R(+) and N(+) denote the range and null spaces, respectively, of their
arguments. That those projections are orthogonal follows from the relations
(6-40]

1

rah) = nayt, s = ra)

1

which can be deduced directly frem Eq. (6-5) through (6-8); the superscript.l
denotes the subspace orthogonal-complement relative to the usual inner product
in finite-dimensional spaces. Complementary (orthogonal) projections are

Iv - A?A and Iu - AAT, respectively, where Iv denotes the v x v identity ma-

trix, The appropriate restriction of the domain of A is now evident; restrict-

t 1

ing A to N(Ayl converts A'A to the identity map on N(A)™.

The Moore-Penrose inverse can always be represented explicitly. The de-
composition of a general matrix in the form

A = BC

where B: u x p, C: p X v, and p = rank (A), is always possible [6-41]. Repre-
t

sentations for Bt and C are [6-42)

s = a7, ¢ = ¢Feeh™?
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and finally

AT = Cth

However, it should be noted that the relation

(Bc)T - CtBt

is not always true for arbitrary matrices B and C [6-43].

One of the chief applications of the Moore-Penrose inverse is in repre-
senting the solutions to linear algebraic equations of the (vector) form

Ax = b (6~10)

If Eq. (6-10) is algebraically consistent, then its general solution can be
written as [6~38]

x = a'b+ a, - Ata (6-11)

Note that, since b is in R(A), Eq. (6-11)

where w is an arbitrary vector,
If Eq. (6-10) is not

is an orthogonal decomposition (cf. Eq. (6-9)).

. . to. .
algebraically ccnsistent, then the product A'b is the least-squares approxi-
mation of minimum norm. Further details on the Moore-Penrose and other gener~

alized inverses may be found in [6-44].

6.4.2 Singular Value Decompositio.

The symmetric products A?A and AAT of a rectangular matrix A have the
same nonzero eigenvalues, and each has the same rank as that of A The non-

negative square roots of the (real) eigenvalues of ATA'are called singular
values of A. They have importance for numerical linear algebra because they
are much less sensitive to perturbation in the elements of A than are the

eigenvalues of A [6-23].

Any rectangular matrix A: u x v with rank p can be decomposed to display
its singular values o, 2 . Z_Op >0 = °p+l = ... ™0 as follows [6-34)

A = BV (6-12)
22
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where U: p x p and V: v x v are orthogonal (unitary if A is complex) matrices,
and I: u x v is a partitioned matrix with D = diag (01,...,09) in the upper

left p x p block; the remaining blocks are zero. The simplicity of existence
proofs for this decomposition [6~34, 6-45] stands in sharp contrast to the
involved details of reliable algorithms for computing it [6-33]. This is a
reflection of the comparative difficulty between analytical and computational
determination of matrix rank since the number of nonzero singular values is
equal to the rank of the matrix.

The columns of U and V in the singular value decomposition Eq. (6-12)
have an important geometrical interpretation, 1f U = [UIZUZ] and V = [VI:VZ]
are partitioned to be compatible with I, it follows fcom writing Eq. (6-12) in
the form AV = Ul that [6-33]

1

Columns of Ul(UZ) form a basis for R(A) (R(A)™)

Columns of vl(VZ) form a basis for N(AYL (N(A)) (6-13)

These interpretations are used to develop an expression for the general solu-

tion of the Kosut gain equation, Eq. (6-3), appropriate for the intended ap-
plication,

Finally, it should be observed that the Moore-Penrose inverse is easily
expressed in terms of this decomposition

al = whyt (6-14)

where the only nonzero block of Zt is the upper left p x p block D.-1 = diag
(o sevns0 ),

6.4.3 An Expression for the General Solution

In examining solutions of the matrix Eq. (6-3), it is sufficient to
consider vector equations of the form of Eq. (6~10), It is assumed that Eq.
(6-10) is algebraically consistent. It was shown previously [6-3] that the
general solution to Eq. (6-10) can be expressed in the form

x = A'b + Sy (6-15)
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¢ where the columns of S: £ x (£ - r) form a bagis -for NCA) and. y: (£ = 1) %1

2 ' is arbitrary. The classical expresslon Eq. (6~11) for ‘the general solutiod of
i Eq. (6-10) differs from Eg. (6-15) in a qualitative manner that is important -
for the intended applxcatlon' namely, it appears that there gre wore araxtrnrr
parameters available. This is misleading.

Theorem 6-1

Equations (6-11) and (6-15) are equivalent solutions of Eq. (6~10).
Proof )
1f A has maximum rank, there is nothinz to prove, since then A?A = I2

and S is the empty matrix. Assume rank (A) = r < &,

{+) Let w: £ x 1 be arbitrary, and investigate the solvability of the
linear system

Sy = (Iz - A?A)w

for y: (2 - r) x 1, It follows from Eq. (6~9) that I, - AlA is o projection

onto N(A). Since the columns sl,...,szﬂr of S form a basis fov N(A), there

exist numbers y = (Yl’°'°’Y£-r) such that

L-r

A ;

% SY = Zys =(12-ATA)m

- i=]

.? (¢} Let y: (£ ~ r) x | be arbitrary, and investigate the solvability of

y the linear syslem

3 (1, - ATu =

% w Sy

3 for w. By the definition of §: Sy € M{A). Since Iz - ATA is a projection

B with range equal to H{A), there exists such an w.WB

5% It is clear from this result that there are at most ¥ - r "effectively

e independent” choices of free parameters in the general solution of Eq. (6-10).
The representation in Eq. (6-15) is therefore more appropriate for the appli-
cation intended, and it is the foundation for the solution procedure to be

4 developed. HMore precisely, the watrix form of Eq. (6-15) correspsading to

e Eq. (6-3) i3 used
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where T: (2 - r) x m is arbitrary. Note that the matrix V, of Eq. (6-13)

i i

forms a natural choice for a basis of N(A) and is available directly from the
decomposition, Eq. (6-12).

¢ 6.4.4 A Numerical Procedure

In the numerical procedure to be described, the focus is on the case
that the coefficient matrix A in Eq. (6-3) is rank deficient. Otherwise, the
solution is unigue, there are no free parameters, and standard linear-

equation-solving techniques can be used unless there is some reason to suspect
4 A to be ill-conditioned with respect to matrix inversion. The rank-deficient
;. case is the most interesting because of its beneficial potential for the

underlying controller design problem,

4 The procedure consists of three basic parts: determining the aumerical
rank of A; computing the particular solution AfB; and computing the general

solution AfB + ST,

6.4.4.1 The Procedure

N Step 1. Determine the numerical rank of the coefficient matrix

E (Denote by rk () the numerical rank of the indicated matrix.)
3 AT

i (a) Form the product A = C.PC, (cf. Eq. (6-4)).

5 (b) Compute the singular value decomposition of A, obtaining matrices

U and V, and singular values Gyseeer0y (cf. Eq. (6-12)).

oA
ety

3 (c) Make an intelligent judgment as to which singular values O pyseee
b g, should be considered zero (i.e., those considered to consist

simply of an accumulation of roundoff errors) (cf. Note 1).
(d) Tentatively sssign rkn(A) = r,
(e) Estimate the numerical rank of the sensor matrix Ce by repeating

steps corresponding to Items (b) and (c). 1If rkn(cc) # rkn(A),

stop execution and investigate (cf. Note 2).

*
(£) Form the product B e pr T (ef. Eq. (6~4)).

c
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(g) Estimate the numerical rank of the augmented matrix [AIB] by re~
peating steps corresponding to Items (b) and (c). 1If rkn([AZB])

# rkn(A), stop execution and investigate (cf. Note 3).

(h) When the estimates for numerical rank in Steps (e), (f), and (g)
agree, assign to rkn(ﬁ) their common value,

Step 2. Determine the particular solution AfB.

(a) Compute AT using the meivices U and V from Step 1(a) and the diag~

onal matrix D@ = disg (0‘1,...,0—1), where .2 rk (&) (cf. Eq.
0 1 L by n
(6-14)).

(b) Compute A'B (c£. Note 4).

Step 3. Determine the general solution ATB + ST

(a) Select a matrix T': (8 - ro) x m of parameter values (arbitrary).

(b) Choose a matrix S: £ x (& - ro) with columns that form a basis

for N(A) (cf. Note 5).

t

(¢) Compute the general solution X = A'B + SI' (cf. Note 6). o

6.4.4.2 Notes Referenced in the Procedure

(1) This task is nontrivial, and an understanding of the underlying
physical problem is usually essential [6-46]. The purpose of
Steps 1(e) and 1(g) is to contribute some of this insight to the
final assignment of a value to rkn(A).

(2) Theoretically, ramk (CC) = rank (A) (6~3]. In most cises, com-

putation of the numerical rank of C, will be subject to less

C
error than computation of the aumerical rank of A. 1n some
cases, it may be possible to determine rank (Cc) by inspection,

which then determines the numerical rank of A.
(3) Theoretically, rank ([A:B]) = rank (A) [6-3].
(4) In actual computatien, AT need not bz calculated explicitly; the

solution ATB is more efficiently computed as the product (cf. Eq.
(6-14))
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(5}  The basis chosen need not be a mutually orthogonal one, However,
an orthogonal basis is readily available as the set of those
columns of V (cf. Eq. (6-12)) which correspond to the zero singu-
lar values of A (cf. Eq. (6-13)).

F ARV TR g

(6) For a given control design problem, Steps 1 and 2 of the proce-
dure need only be done once. Step 3 may be computed repeatedly
with different choices for I' and S until satisfactory coantrol
system performance improvement is achieved.

6.4.5 Summary

In order to be able to take advantage of the design freedom inhereat in
4 the extensions [6-3] to the Kosut method of suboptimal output feedback, a
k. numerical procedure has been developed to compute the general solution to the
gain -equation in the rank~deficient case. The procedure is based upon a com-
E putation of the singular value decomposition for the coefficient matrix and
% expresses the solution in a form that facilitates exploiting the available de-
sign freedom, The design freedom consists of:

_ (1) A choice of the basis for the null space of the coefficient
E marrix,
2 (2) A choice of free parameterc pronortional in number to the rank

deficiency of the coefficient maivix,

One candidate for a choice of the basis vectors is provided explicitly by the
procedure, Choice of the free parameters may be motivated by consideration of

§ the full-order closed-loop system equations that contain the reduced-order

’ controller under study.

% 6.5 Conclusion

4 Considerable effort has been devoted to characterizing the design free-
7 . dom with suboptimal output feedback that was recently uncovered and to devel-
% oping methods for exploiting that freedom. In the present sectiom, this

3 effort has been placed in a much broader context by showing the close rela-

o tionship with other significant work relating to design freedom and indicating

the rapid development of interest in such matters. We believe that, in re-
sponse to increasingly stringent spacecraft performance specifications, an in-
creasing amount of attention will be given to discovering, characterizing, and
developing systematic approaches to exploiting available freedom of choice in
design.
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6.6 Addenda

6.6.1 Characterization of Design Freedom with State Feedback (m > 1)

}

4 The system of Eq. (6~]) is being considered. In order to facilitate a
{ concise statement «f the main result, several preliminary ideas are neces-

# ( sary., First, recall an alternate characterization of controliability in the
" frequency domain:

f; Fact 6-1 [6-47; pp. 71, 161]. The pair (A,B) is controllable if and only if
I . o A L] . -

G the polynomial matrix A + S(}) = [AIn ~ A.B) has linearly independent rows for
: each complex number \.HN

; Second, note a particular property of such polynomial matrices:

% Fact 6-2 [6-47; p. 194]. 1f (A,B) is controllable, there exists a matrix

5 . A . .

b function A -+ g%i% which, for each complex number A, forms a basis for the
null space of sS(A)T
:§ The main result is stated in terms of the n x m matrix function N(¢):
ﬁ, Theorem 6-2 [6~13]

; Assume that the pair (A,B) is controllable and that a set of distinct

complex numbers A., i = 1,...,n (containing the conjugates of each of its
i

.
%

elements) is given. Then there exists a real full-state feedback matrix K
(cf. Eq. (6-1)) such that

A
BEY

A (A + BR)V: = Aiv‘ ,i=1,...,n

if and only if the (eigenvectors) v satisfy the following:

302
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5 (1) The collection {vl}i:l is linearly independent over the complex
2 (2)  The collection of related pairs {(ki,vl)}i:l are such that
5 vl = vt if Aj ='f; (where "—" denotes complex conjugation)

(3) For each i: v € span [N(Xi)].

Mcceoever, any 1 K is unique. R
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This result can be modified appropristely to eliminate the need for
assuming controllability of the pair (A,B) [6-11] or for assuming that the
assigned closed-loop eigenvalues are distinct [6-12].

6.6.2 Exploitation of Design Freedom with State Feedback (m > 1)

A spectral characterization of the closed-loop output dynamics of
Eq. (6-1) and (6-2) is given readily. For simplicity, assume distinct and
stable closed-loop eigenvalues and a step input.

Fact 6-3 [6-13]. Assume the eigenvalues of A + BK are distinct with negative

real parts. Let n(t) = ng = constant, Then

Myle00) + vttty

y(t) -y, = Cve Bln, , t20

and

_ -1.~1
y, = =CVA 'V BLns

where A & diag (ki) displays the eigenvalues, and V 4 [vll,...,f vN] displays

the eigenvectors, respectively, of A + BK.IR

The reader is referred to [6~13] for specific suggestions on how to use
this representation effectively as a guide in selecting the eigenvectors to
shape the dynamics o/ the response y(t) - Y,- In particular, the potential

for eliminating effacts of a given mode upon as many as m - 1 of the output
components is of interest. It should be noted that imuch more freedom of
choice really exists than is actually exploited in [6~13], since all but one
of the eigenvectors are assumed fixed,
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SECTION 7

RLE LI s

STOCHASTIC OUTPUT FEEDBACK COMPENSATORS
FOR DISTRIBUTED PARAMETER STRUCTURAL MODELS

/
7.1 Introduction

{ This section presents recent progress on the stochastic output feedback
3 design problem for distributed parameter plants. The results presented are an
extension of those described in Section 2 of Reference 7-1. The desire to de-
: sign optimal output feedback compensators for distributed parameter flexible

3 models motivated consideration of the following probkiem,

; Given a cost functional J(+) defined over some set T of admissible com-
pensator designs for the unknown distributed parameter plant P, determine the

A . . * e s
; optimal design K that minimizes J(+) over T,

To accomplish this, define a sequence of finite~dimensionai approximat-
ing plant models {P“} along with an associated sequence of cost functionals

. . . * « e
{Jn(°)} snd determine the optimal compensator designs K that minimize Jn(')
i over I'. For "reasonable" choices of P, 7, J(¢), and the approximating scheme
: . . . *
5 defining P and Jn(-), one would expect that the optimal compensators K
*

should converge to K as n + =, However, it is not obvious exactly what con-
stitutes a "reasonatle choice" of P, T, J(+), {Pn}’ and {Jn(°)}. For example

{7-2], in the special case when P is an undamped flexible structure, linear
regulators designed from truncated normal mode models Pn do not converge to a

s AR

limiting linear regulator for the plant P. Consequently, it is extrvemely im-
portant to address the following fundamental questions:

' *
(1) When does a set S C T of optimal designs for the plant P exist?

*
(2) When do the corresponding sets Sn exist for the plants Pn?

* *
(3) If the sets S, exist for all n, does the sequence {Sn} converge to

E some set S CTI?
- * . *
5 (4) 1f the sequence {Sn} converges, does it converge to S ?

E Sufficient conditions are developed in this section for the answers to
3 each of these questions to be at least approximately '"yes". The results

3 reported previously [7-1] addressed only the last of these questions, provid-
4 ing sufficient conditions for the optimality of the limiting set of compensa-

13 * »
tors to which the sequence (Sn} converged, assuming the sequence converged.
4
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Continued investigation has shown that some of the key theorems employed in
establishing these results are special cases of more general results [7-3].
In particular, the results of Reference 7-3 are sufficient to guarantee the

) * * *
existence of the sets S and S , the convergence of the sequence {Sn}’ and the

optimality of the limit., Further, these results are applicable to infinite-
dimensional design sets I', which suggests the possibility of developing con-
vergence conditions for infinite-dimensional compensators like the linear
regulator considered in Reference 7-2. The price paid for chis increased
generality, however, is the necessity of dealing with weak convergence and re-
lated Banach space concepts. If these results are specialized to the original
problem for which I is finite dimensional, the strong convergence results con-
jectured in the conclusions of Reference 7-1, Section 2 are obtained,

Consequently, the results of this section are presented in the following
format. First, the notion of weak convergence and weak compactness are
introduced in Section 7.2, and their importance is established in the context
of the problem considered herein. Next, the general results of Reference 7-3
are presented in Section 7.3. Specifically, sufficient conditions on J(+),

* *
Jn(°), and T are presented for sets S and § of global minimizers of J(+) and

Jn(°) to exist along with sufficient conditions to guaraatee that the sequence

* *
{Sn} converges weakly to a subset of S as n + », Once these general results

are established, they are specialized in Section 7.4 to the original problem
where the set I' over which J(¢) is minimized is finite dimensional. This
yields a variety of existence and convergence results for the optimal fixed-
form compensator design problem, which culminates in Theorem 7-6, Theorem 7-6
provides sufficient conditions for the answer to the four questions posed pre-
viously to be approximately "yes". The implications of the requirements and
conclusions of Theorem 7-6 are discussed briefly in Section 7-5 to make these
answers more precise,

7.2 Notion of Weak Convergence and Weak Compactness

In the results developed in Reference 7-1, the compactness of closed,
bounded subjects of the set I' of admissible compensators played an essential
role, If I is defined on an infinite~dimensional Banach space, however, it is
no longer necessarily true that closed, bounded subsets of I' are compact. For

example, the se: {x ¢ BI 'lx'l's M} is compact if and only if the space B is

finite dimensional [7-4]. Consequently, to extend the results of Reference
7-1 to problems for which I' is defined on an infinite-dimensional Banach
space, it is necessary to introduce the notions of weak convergence and weak
compactness,

First, recall that a Banach space is a normed linear vector space that
is complete in its norm (e.g., given a sequence (x“} such that x € B for all

n and ”xn - xll > 0 as n+ o, it follows that x € B). Convergence of this
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type {e.g., given € > 0, there exists N such that n>N= 'Ixn - x|| < e for
all n > N) is a strong convergence, denoted x $ x, and it corresponds to the
usual notion of convergence in the Euclidean space R" for any finite n,

If B is an infinite dimensional Banach space, then a weaker type of con-
vergence is possible. Defining B* as the dual space of B (i.e., the space of
bounded linear functionals mapping B into Rl), {x]} converges weakly to
x (x ¥ x) if 'f(xn) - f(x)] » 0 as n» » for all f ¢ 3. The implication that

convergence implies weak convergence is a standard result [7-4, 7-5], but the
converse is not true unless B is finites dimensional.

* *k
Since B is a Banach space, the second dual space B of B is well de-
fined and it is another standard result [7-6] that B may be identified with a

~ N .
subspace B of B . In general, this inclusion is proper, but a reflexive

Kk
Banach space is one for which B = B . This is a very broad class of spaces,
which includes all Hilbert spaces and, as a comnsequence, all finite-

dimensional Euclidean spaces R". For the problem considered here, the most
significant feature of this class of spaces is that all bounded sequences {xn}

(i.e., all sequences such that l'xnll <M for all n) have weakly convergent

subsequences {7-5]. Consequently, any countable, bounded sequence on a re-
flexive Banach space may be decomposed into (possibly a countably infinite
number of) convergent subsequences, each of which converges weakly to some
limit in B,

This fact may be used to define the notion of weak compactness on re-
flexive Banach spaces. Specifically, in analogy with sequential compactness,
a set S is weakly sequentially compact if every sequence {xh} in S has a weak-

ly coanvergent subsequence that converges to an element of S. Since compact-—
ness and sequential compactness are equivalent on metric spaces [7-4), the
term "weak sequential comprctness' can be shortened to "weak compactness" or
"w-compactness". Similarly, weakly closed (w-closed) sets may be defined as
sets containing all of their weak limit points (i.e., S is w-closed if x, € S

for all n and L ¥ x together imply x € §8). It then follows from the preced-

ing result that if S is a weakly closed, bounded subset of a reflexive Banach
space B, then S is weakly compact. Thus, the concepts of weak convergence and
weak compactness play the same roles in infinite-dimensional, reflexive Banach
spaces that their strong counterparts play in finite-dimensional spaces.

Finally, it is important to note that weak closedness is a “stronger"
notion than ordinary (i.e., strong) closedness in spite of its name., Speci-
fically, if a set is weakly closed, it is also strongly closed since if x, €8

for all n and " ? x then X, y X, implying x € S. The converse, however, is
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not generally true. A special case for which the two concepts are equivalent
occurs, though, when S is convex also [7-3] (i.e., given X9, € S, it follows

that Xxl + (1 - X)x2 e S for all 0 <A £ 1). Thus, if a subset S of a reflex-

ive Banach space B is closed, bounded, and convex, it is weakly compact.

7.3 General Existence and Convergence Resgults

The following paragraphs summarize the pertineant results of Reference

*
7-3 concerning the existence of global minimizers x of a functional £(¢) de-
fined on a reflexive Banach space B and the weak convergence of the global

. » 3 * . 3 - *
minimizers x of a sequence of approximating functionals {fn(°)} to x as

n + «, In particular, very general sufficient conditions are developed for
both of these situations to occur. More specifically, the first problem con-
sidered is as follows.

Given f(¢): E =+ R1 for some E C B, what conditions on E and £(+) are
* * *
sufficient to guarantee the existence of a set S C E such that x ¢ § im-

*
plies f(x ) < f(x) for all x ¢ E? First, define the following constructs.
The funciional £(¢) is lower semicontinuous (lsc) on the set E if [7-3, 7-7]

the set {x ¢ Elf(x) > A} is open for any real A or the set {x € Elf(x)‘s A} is

closed for any real A. Alternatively, define lsc functions sequentially [7-5,
7-7, 7-8) (i.e., f(+) is lsc on E if for any sequence {xn} € E with X % x, it
follows that £(x) < lim inf £(x )). Strictly speaking, this latter descrip-
= nro

tion defines a sequentially lower semicontinuous function, but it is noted

in Reference 7-3 that while considering strong convergence, the two concepts
are equivalent [c.f. 7-7]. This is not the case, however, if weak convergence
is considered. That is, we can define f(+) as a weakly lower semicontinuous
(wlsc) function on E if for any real A, the set {x € E{f(x) < A} is weakly
closed, and define f(¢) as a weakly sequentially lower semicountinuous (wslsc)
function on E if for any {xn} € E with X ¥ x it follows that £(x) < lim inf

- nroe
f(xn). It is noted in Reference 7-3 that weak sequential lower semicontinuity

ie generally a weaker property than weak lower semicontinuity, i.e., if f(e)
is wlsc, it is wslsc, but the converse is not geuerally true.

Similarly, as in the case of strongly and weakly closed sets, it is
important to note that weak lower semicontinuity is a "stronger" concept than
(strong) lower semicontinuity. Specifically, if £(+) is wlsc on E, then the

set {x ¢ Elf(x) < A} is weakly closed, hence closeG for all real X, which

implies that £(+) is lsc on E. Again, as in the case of strongly and weakly
closed sets, the converse does hold if additional conditions are imposed on
£(+). Specifically, the functional f(+) is quasiconvex [7-3] on the convex

set C if the set {x ¢ le(X).ﬁ %} is convex for all real A. Thus, if E is
convex and weakly closed and f(+) is lsc and quasiconvex on E, the set

{x ¢ Elf(x).s A} is (strongly) closed and convex, hence weakly .closed,
37
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implying £(+) is wlsc on E. Note that the notion of a quasiconvex functional
is a generalization of the more common notion of a convex functional, which is

defiaed on a convex set C as one for which

f(kxl + (1 - A)xz) < Af(xl) + (1 - k)f(xz)

for any X)s Xy € Cand 0 <2 < 1. It is noted in Reference 7-3 that a quasi-

convex functional is one for which

f()\x1 + Q1 - k)xz) £ max[f(xl),f(xz)]

for any X X,y € Cand 0 <A <1, Since
kf(xl) + (1 - A)f(xz) £ max[f(xl),f(xz)]

for all 0 <A <1, it is clear chat f(+) is qucsiconvex if it is convex.

Given the definition of weak sequential lower semicontinuity just pre-
sented and the notions of weak convergence and weak compactness presented in

*
Section 7.2, it is simple to establish the following existence result for S .

Theorem 7-1 ([7-3], Theorem 1.4.1)

1f £(+): E » Rl is wslsc on the weakly compact set E, there exists a

* * % ) * )
nonempty set § C E such that x ¢ S implies f(x ) = lné £(x).
X€

Proof

Let

*
£ = inf f(x)
x€E

By definition of inf f(x), there exists a sequence {xn}(: E such that

lim €(x ) = £
n

n*e
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Since E is w-compact, there exists some x € E and a subsequence {x_} of {xn}

R

* . * *
such that x_ ¥ x . Clearly, since f(xn) > £, f(x_) > £ also. Thus,

1 St At

since f(+) is wslsc

* * * *
x $x = flx) < liminf f(x ) = £ < f(x)
K = e ny -

AT P L LT

) * *
3 Thus, x € 8§ ., a

Unfortunately, in the applications considered here, the set E (corre-
sponding to the set I of admissible compensators in the optimal compensator

b design problem) generally is not bounded, hence nci w-compact. If additional
b constraints are imposed on £(+), however, it is possible to guarantee that

7 £(+) exhibits a set of global minima on some w-compact subset E' of E, Spe-

3 cifically, f() satisfies a T-property on E if there exist Xy € E and T, >0

; such that l|x - x0|! Z.To implies f(x) > f(xo) for any x € E. As the follow-
; ing thecrvem shows, if £(+) satisfies a T-property on a w-closed set E, the op-
4 timization can be restricted to some w-compact subset of E,

3 Theorem 7-2 (adapted from [7-3), Theorem 1,4.2)

%

ﬁ Suppose E is a weakly closed subset of a reflexive Banach space B, If

£(+): E » Rl is wslsc and satisfies a T-property on E, then there exists a

* * Kk
w-compact subset C of E and a set S C C such that x € S implies

- *
4 £(x ) = inf £(x)

3 ReE

i Proof
M

) Let S(xO,TO) be a strongly closed sphere of radius To about Xy © B,

4 Since the set is strongly closed and convex, it is weakly closed and bounded,

hence weakly compact.,

3 Since E is weakly closed, the set

¢ = ixeE| ||x-x}| & T} = slxpr)NE

is also weakly compact,
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Since f(+) satisfies the T-property, f(x) > f(xo) for any x ¢ E but
x ¢ C. Thus

inf f(x) = min | inf £f(x), inf £(x)] = inf £(x)
xeE ! xeC x¢g xeC
%E

*
Since C is w-compact, the existence of a set S of global minimizers of
£(+) over C is guaranteed by Theorem 7-1.

It is possible to establish that f(¢) satisfies a T-property in a
variety of ways. One of the simplest is to guarantee that f£(x) increases as

le‘l increases. For example, f(+) is semicoercive on E if [7-7]

liiml* £(x)
X 00
e TN
and coercive if
I}iml* £(x) -
x -] =
e UlTRY

from which it is immediately clear that any coercive function is semicoercive,

Lemma 7~1

If f(¢): E » R! is semicoercive on E, it satisfies a T-property.
Proof

Since f£(+) is semicoercive, there exists some a > 0 such that

lim £(x)
o === >
el a7 2

fe4

Thus, there is some constant M > 0 such that

Hx“ 2 M, xeE = > 92- = f(x) > g—“x”
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Now, choose any X, € % &nd define

2f(x0)
M' = max |M, +1

83

so that

Hx” > M, xckE = f(x) 2> -;—”x”

> s

v

o
f(xo) + 3
> f(xo)

Finally, note that, by the triangle inequality
lx = %ol] < Tl ol =TI} + %ol
> |l 2 % = %ol| - 1%l
Thus, if
T, = |lxol| +

it follows that

”x-xOH > T, = “w“ > M= f(x) > f(xo) [

-0
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*
Once it has been established that some set 3 of global minimizers of
f(+)} over the weakly closed set E exist on some weakly compact set C, we can

*
turn to the problem of how elements of the set S are to be constructed. Spe-
cifically, consider the sequence {fn(°)} of approximating functionals defined

on the approximating sets {En} for n = 1,,.. The basic question considered
hiere is ''what relationship must exist between the approximating sequences

*. . * .
{fn(')} and {En} and f(¢) and E to guarantee that solutions x of the approxi-
mating problems lefined by fn(‘) and E_ converge in some useful sense to an

¥ . . . .

element of S " A very useful answer to this question is developed in Refer-
ence 7-3 by introcucing the concept of a "consistent discretization"” of the
original problem. The remainder of this section is therefore devoted to
presenting a slight generalization of these results as the basis for the
results that Jollow. (The generalization is this: Reference 7-3 assumes that
the set E nver which f(¢} is defined and minimized is the entire reflexive

Banach space B. In the problem considered here, E may be any weakly closed
subset of B.)

A discretization of the miaimization problem of £(e) over C may be de-
fined [7-3] as a family of subsets {En} of reflexive Banach spaces {Bn}’ a
famiiy of functionals {fn(-)} defined on E,a family of mappings {pn} of E
inty T, a family of mappings {rn} of E into E , and a family of subsets {Cn}
of E . The basic idea is that {fn(°)}, {En}’ {Bn}, and {gn} represent ap-

proxuwations, in some sense, of the components £(+), E, B, and C of the orig-
inal minimization problem, respectively. The mappings {pn} and {rn} thus

represent projections of the approximating sets {En} onto the set E and the
set E the approximating sets {En}, respectively., These definitions are gener-

al enough to allow the approximating problems and the original problem to be
defined on Banach spaces {Bn} and B that are qualitatively very different.

In particular, the approximating spaces {Bn} may be finite dimensional.

Using these definitions, Reference 7-3 associates the following approxi-
mate problem with each discretization., Given a sequence {En} of positive
numbers converging to zero, consider the set Sn of elements ;n € Cn such that

fn(xn) < x12£ fn(xn) + En
non

. . *
Note that if there exists some subset Sn of Cn such that
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£ (x) = inf £ (x )
nn Xp€Cq 0 O

* *
for all x € Sn’ then it follows that

*
f(x) = inf £ (x) < inf £ (x ) +§
nm xeC M0 = yes uon n
n n o

* ~
for any £, > 0, implying S, C Sg.

In order to develop suffic.ent conditions for the set of Sn to coanverge
* » - - . i
in somo sense to S , Reference 7-3 defines a consistent discretizgtion as a

discretization of the original optimization problem that satisfies the follow-
ing constraints

(1) The set %n exists for all n.
(2) é:g sup [f(pnxn) - fn(xn)] <0 if x €S .

(3) The sets C" = p,C,U C are uniformly bounded.

n.
4) 1f z €C ' and z ¥ 2z, then z ¢ C.
i i

* * * *
(5) For some x € S, lim sup f (r x ) < £(x ).
n+>oo an n

* ok *
(6) For the same x € S , rx €C..

Note that if p,C,C C for all n, Conditions (3) and (4) are satisfied auto-

matically, These conditions are sufficient to establish the following result.
Theorem 7-3 ([7-3], Theorem 2.2.1)

Suppose {fn(°), E» B Co» P rn} define a consistent discretizationm,

n n

and let K be a subset of E such that C" C K for all n sufficiently large. If
C is weakly compact and X, € Sn for all n, then
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- ~ *
lim f(p 3 ) = 1lim £ (x ) = f£(x )
are nn nre 0T

* -
where x satisfies Conditions (5) and (6). Further, the sequence {pnxn} may

be decomposed into subsequences, each of which converges weakly to an element

* ~ *
of §, i.e., p S ¥scCs'.

.; ﬁﬁ? "‘:@k:wﬁgwﬁ,y% AR AN
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g Before proceeding with the proof of Theorem 7-3, the following lemma,
3 required in the proof, is established.

%\ Lemma 7-2

3

4 The sequence {Yn} converges to zero where

Ee

2 * .

- y. o= f(x) ~ inf £(x)

£ n n

—3} xeC

Z

. % *

v% and x € S , [}
3 ¥

2 Proof of Lemma 7-~2

4 *

3‘ (1) First, note that since x € C cch, Y, > 0 for all n,

5

’i (2) Next, for eacl: n, select some z € c" such that

:

b . 1 * 1

3 + -~ -

i £z ) < mfn £x) += = f(x ) + [n Yn]

B xeC

5

{: 4 . .

3 (3)  Now, choose N such that n > N => ¢'C K CB and note that since K
E is bounded, the sequence {zn} is bounded for all m > N. Since B

is a reflexive Banach space, {zn} may be decomposed into a collec-
tion of subsequences {zn }, each of which converges weakly to some

z € B. k
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*
so that f(x ) < £(z).

(5) Note also that since f(+) is wslsc on K

o4 ad g reag ey

£(z) < lim inf £(z_)
koo nk

LAl 12

i
cRE A

N\

*
£(x ) + lim inf [l-- y_ )
koo " "k

S i

| anies,

.. 1
> &:2 inf [;: - Y“k] > 0

(6) Thus

sy s bR Pt

R AT
Prp b

3 lim inf [l—-- Y_ ] lim inf = - lim sup Y
% k+o '."k l’\k ko nk k2o n

v

k

2> lim inf == > lim sup ¥
Iy nk - ko

= 0 > lim sup ¥
= ke

5 > lim inf ¥y > 0
~ kiro nk -

4 => lim Y = 0
. k> l‘\k

(7) Since this proof may be repeated for all subsequences {z“ } de-

fined in Item 3, it follows that limy = 0. k
nre n
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Proof of Theorem 7-3

* *
(1) Take N and {Yn} as in Lemma 7-2. Since x € § , it follows

E(x*)

inf f(x) + Y,

n

P {AH

[Pa

[}

where n
n

(PN

inf
x €C
non

in

£ + + + i X €
n(xn) En Y, * N, sincex S

f(pnxn) Y, for x € S_ C C,

£ (x)+y +n
non n n

f(pn§n> - fn(;n>

~ ~

n

* i *
f (rx)+E +y +n since r x € C_ by
a on n a n n a

Condition (6) of the consistency definitionm.

* *
(2) Defined =f (r x ) - £(x ) so that
n n

* *
(1) = f(x) £ £(x) + Gn *E HY

2> § + &n + Y, + "y 2 0 for all n

=D 0-<_

in

| P

lim inf (6 + & + Yy +n)
o n n a n

é:: sup (Gn PE P n“)
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Since lim § = limy_ = O and, by consistency Conditions (2)
n>e e 0

and (5), respectively, it follows that

i <
'1‘:2 supn. < 0

and

AR LR FA I Rt A S LRSI S S 5 S £ SRS o A p s etk s R Al Aty
.

lim.supd_ < 0
n+o n -—

(3) Thus

o Ggrng) =0

Note that if lim inf N < a for some o < 0, there exists some sub-
n+® -

sequence {n } so that
%

nni _<_a/2 < 0

for all i, implying there is some subsequence {Gn } such that
i

8 > -a/b > 0
n —

However, this implies

limsup 8§ > =-a/t > 0
n+o n =

[OPIE

which contradicts Condition (5) of the consistency requirements.
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3
g Thus
B.

lim infn_ > 0 > limsapn = limn = 0
e n - = o n nro N

i Similarly, it follows that
limé = 0
e 0

A

(4) Thus, it fcllows from the inequalities in Item (1) that

S AU el

* . - . .
f(x) = é:g f(pnxn) %:2 fn(xn)

i (5) Finally, since c"C K for all n 2 N with K bounded, the sequence
* .

;: (pnxn) may be decomposed into subsequences that converge weakly to
é ‘ limit points in B,

f Since ;n € Cn’ pn;n e ¢ for all n so that by consistency Condi-
,i tion (4), if p x_ ¥ z, then z ¢ C.

- e M

Further, since f(+) is wslsc on K

- *
4 f(z) < lim inf £(p =x ) = f£(x )
= ke " Mk

PN

e

PR

i *
g0z €8S .,

SRR ot s e
R 8

~ ~ - ~ *
Thus p S = {pnxn'xn € Sn} ¥sCs.

ENRY

7.4  Application to Fixed~Form Compensator Design Problem

- The results just presented are very general; thus, they are applicable
4 to a very broad class of problems including the fixed-form compensator design
.- problem of interest herein. Because of their generality, the conditions these
‘j” results impose on arbitrary optimization problems are somewhat hard to inter=-

x: pret. However, if they are specialized to the optimal fixed-form compensator
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design problem, these conditions simplify considerably. Consequently, the
remainder of this section is concerned with the following special case.

The arbitrary functional f(+) will be replaced by the cost functional
J(+) defined over some set T of admissible compensator designs. It is impor-
tant to note that this is a departure from traditional optimal control prob-
lems in which J(¢) is a functional on some function space U of control inputs
u(t). While it is true that a priori restriction of the control law to some
prespecified form may result in a performance degradation {i.e,, the set of T
of admissible compensators may not be large enough to generate the control in-

put u*ft) that minimizes J(u) over U), it is also true that practical designs
will be restricted to some set of admissible compensators anyway. Thus, the
approach developed is to identify the set T a priori on the basis of various
important practical considerations and to optimize performance within these
restrictions, In particular, it is assumed that once these restrictions have
been identified, a compensator form meeting these restrictions is selected
that reduces the design problem to that of selecting values for some finite
number £ of design parameters that minimize the cost J(¢). Thus, the set T of

.. . L
admissible compensator designs becomes a subset of the parameter space R .
The most significent simplificatiorn inherent in this formulation of the
compensator design problem is that optimization is now carried out over the

finite-dimensior.al Euclidean space Rz rather than the infinite-dimensional
space U. Consequently, since weak and strong convergence are equivalent in
finite-dimensional Bznach spaces, the results of the preceding section can be
used to obtain sufficient conditions for the strong convergence of the ap-
proximate compensator designs to the desired optimal limit, That is, by for-
mulating the design proccdure described in the introduction as a discretiza-
tion of the minimization of J(¢) over I', sufficient conditions for the ccn~

. * . .
vergence of the optimal param:ter vectors Eﬂ for the approximating plants Pn

* . . :
to the optimal parameter vectors k for the infinite-dimensional plant P may
be obtained,

In particular, the discretization defined by the design procedures is
the following. First, all minimizations will be restricted to the closed set
r CR2 (i.e., Bn = B = R2 and En = E =T for all n in the notation of the pre-
vious subsection). Consequently, the mappings of {Pn} and {rn} appearing in

the definition of a discretization are all identity mappings in this case.
The approximate optimization problems agsociated with this discretization will

s e . . . * .
be the minimization of Jn(') over I' (i.e., the set Sn of solutions to the n°

* *
approximating problem cousists of kK € T such that J (k ) = inf J (k). In
= n=n’  gef 0=

order for the design problem considered here to be well posed, it is, of
*
course, necessary that the sets {Sn} exist for all n, If Jn(°) and J(¢) are

required to satisfy the conditions of Theorem 7-3, for example, the existence
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* .
of the sets {Sn} and S is guaranteed as are the existence of the compact sets

* *
{Cn} and C containing {Sn} and S , respectively. Note, however, that without
further restrictions on the functions {Jn(°)}, the compact sets {Cn} need not

bear any special relation to the set C. In particular, it is entirely pos-
sible that the sets {C } are not uniformly bounded and will therefore not con-

verge to the set C in any sense as n + », which suggests that the sets {S }

may not converge into the set S as n + », If, however, it can be estab11shed
that the discretization just defined satxsfies the cousistency requirements
developed in the preceding subsection, it will follow from Theorem 7-3 that

* . . .
the sets Sn of optimal designs associated with the plants Pn will converge to

*
to a subset of thc set § of optimal designs associated with the plant P and
* * * * * *
that J (k ) + J(k ) for any k € S and k € S . Specifically, combining the
n -—n e -} n -

definition of a consistent discretization with the conditions of Theorem 7-3
and specializing them to the present problem, the following result is
immediate,

Theorem 7-4

Suppose ' is a closed set in R2 and J(+): T » R1 is an lsc function ex-
I3 * . .
hibiting some bounded set § of global minima over I'. Suppose further that
each function Jn(-): s Rl also exhibits some bounded set S, of global minima

over I' and that the following conditions are met:

* *
(1 Sn CK, S C K for some compact set K CT,

* * *
(2)  limsup [J(k ) -J (k)] <O ifk €5 .
N -0 n~—'- - —n n

* * * *
(3) lim sup J (k ) < Jk ) for some k € S .
n_’m nq— — —
Under these conditions, the following results hold:
* K
(4) s +sCs.

(5)  limJ ) = lim 3D = 3

nre n+o

* * * * Lo .
where 3“ €8 and k € S satisfies Condition (3).
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Note here that the compact set K defined in Condition (1) takes the
place of the sets {Cn} and C in the original definition of a consistent dis-

cretization. This guarantees that Conditions (3), (4), and (5) of the origin-
* *
al definition are satisfied. Given the assumed boundedness of sets S and Sn

individually, it is clear that Condition (1) of Theorem 7-4 can be satified if

*
and only if the sets {Sn} are uniformly bounded.

1f Condition (1) of Theorem 7-%4 is satisfied, Conditions (2) and (3) may
be replaced by a uniform convergence condition, as the following lemma

demonstrates.

Lemma 7-3

1f Condition (1) of Theorem 7-4 is satisfied and if Jn(°) + J(e) uni-

formly on the set K, then Conditions (2) and (3) are also satisfied.

Proof

(1) Condition (3) follows immediately since if Jn(°) + J(+) uniformly

* * * *
onkK, k €68 CK=J (k) > Jk).

Thus

* * *
lim sup Jn(lt_ ) = lim Jn(lc_ ) = Xk)

ntre n+o

(2) Similarly, since Jn(°) + J(+) uniformly on K, J(k) - Jn(E) >0

uniformly for all k € K.

x %
In particular, since k € S _C K for all n, J(k ) - J (k) +0 as
- n -0 n -

n+wl

Thus

3‘3 sup [J(_lgﬂ) - Jn(_lg_n)] . 315 [J(_l_c_n) - J“(kn)] = 0

and Condition (2) is satisfied,
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To establish Condition (1), either one of two approaches may be taken,
resulting in either a constrained optimization problem or an unconstrained
optimization problem. In the first case, if J(-) is required to satisfy a
T-property, then it follows from Theorem 7-2 that there exists some compact

.. * . s
set C containing the set S of all global minimizers of J(¢) over I'. Conse-
quently, if each function Jn(°) is lower semicontinuous on I', the existence

*ok
of nonempty sets S C C that minimize Jn(-) over C is guaranteed by Theorem

ek
7-1. Thus, applying Theorem 7-4 to the sets Sn leads immediately to Theo-

rem 7-5,

Theorem 7-5 (Constrained Optimization)

Suppose I' is a closed set in R2 and J(¢): T » Rl is an lsc function
*
satisfying a T-property on T'. This guarantees that S C C for some compact
set C. Suppose {Jn(-)} is a sequence of lsc functions on C that converges
*k
uniformly to J(¢) on C, and let Sn denote the set of global minima of Jn(°)

over C, guaranteed to exist by Theorem 7-1,

Under these conditions, the following results hold:

%~ *
(1) Sn+SCS as n + ®

(2) 1lim J (k**) = lim J(k**) = J(k*)
n -n -1 -

n>e nve

Fok dek * *
where Kk € S and k € 8 .,
-0 n -

) ) *k
It is extremely important to note here that the sets {Sn } are not the

*
the same as the sets {Sn} congidered earlier. For example, suppose J(¢)

satisfies the conditions of Theorem 7-% and éng J(k) > 0. Then if the ap-
g L2

proximating functions {Jn(-)} are defined by

n
n

e = 10 ]
4]

Lo,

<
2
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for all k € T, it follows that for n such that ¢ CL = (ke r| “k” < n}

%k * *%

* 3 3
Sn = § , guaranteeing that Sn + S as n»> © in agreement with Theorem 7-5.

* . ° . .
The sets Sn, however, consist of all elements k of T not in Lﬂ, ensuring that

R o by T e

J (K = 0 = inf J (k)
n = kel 0=

Note that Jn(h) is lsc on T since J(k) is lsc on L, and 0 is obviously lsc
on T ~ Ln' Thus, the only points in question occur on the boundary @ between

L and T - L . Since L_ is open, T = L_ is closed so @ CT -~ L implying
n n n n a

Jk) = 0 < lim inf J(k )
- -

e nro

if k € @ for any sequence {Eﬂ} in T. Note also for any compact set KCT,
there is some N such that Jn(E) = J(k) for all k € K if n > N. Thus, {J“(°)}
! converges uniformly to J(+) on any compact subset of T,
To avoid these difficulties, the second approach to establishing that
Condition (1) of Theorem 7-4 holds is to strengthen the conditions on {Jn(~)}

and J() as follows. First, uniform convergence will bec required on all of T
rather than just compact subsets of I'. This requirement will exclude the
pathologies exhibited by the last example, although even under this restric-
tion, another difficulty can arise. In particular, the fact that J(+) satis-
fies a T-property is not enough to guaraatee that J(k) does not approach

&n% J(k) as "kl‘ + ®, For erample, consider tire one parameter cost function
¢ = =

illustrated in Figure 7-1. Here, J(k) satisfies a T-property at k = (, but
J(k) + J(0) as k » =, To correct this difficulty, define a sharp T-property

as follows,

Definition (Sharp T-Property)

The function J(¢): T =+ r! satisfies a sharp T-property if there exist

54’54 € I' and T0 > 0 such that

He -k )] 2 15 = 3G > 3k) > k)

L
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Figure 7-1. J(k) satisfies a T-property at k = 0 but
J(k) » inf J(k) as k » #

keR

It is clear from this definition that any J(+) satisfying a sharp T-
property satisfies a T-property and that if

b et [ [l nll € 1

L is a compact set and

inf JK) > Jk,) > Jk.) > inf J(k)
gL — = = =2° = geL -

It is also clear that if J(¢) is a semicoercive function, it satisfies a sharp
T-property. With these results, the following unconstrained optimization
theorem may be established.

Theocrem 7-6 (Unconstrained Optimization)

Suppose I' is a closed set in R? and J(+): T »+ R1 is an lsc function sat-
isfying a sharp T-property on T, If {Jn(')} is a family of lsc functions on T

that converges uniformly to J(*) on ', then the following conditions hold:
(1)  All global infima of Jn(°) and J(+) are achieved on some compact

) *x %
set K, i.e., S , S C k.

~

* *
(2) Sn+SCS as n + ®,
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* * *
(3) limJ (k) = limJ(k) = Jk)
n+o n -—-n n>e - —

* * * *
where ¥ ¢ S and k € § .
- n -

e A S b L S PR

Proof

bR T by

(1)  Since J(+) satisfies a sharp T-property on I', there exists some
compact set K such that

inf J(k) > inf J(k)
kK ~ kek  —

Further, since J(¢) is lsc on T, by Theorem 7-1 there is some set

*
S C K such that

*
eSS = Jk) = inf J(k) inf J(k)
- keRk ™ kel =

i=

(2) Let

v
(=]

d = inf J(k) - inf J(k)
kK —  kek ~

Since Jn(°) + (+) uniformly on T, there is some N such that if

n>N

|3, = 3| < /3 for all ke T

Thus, if k € K

3 ) 2 Ik - d/3
> inf J(k) - d/3
2 gk e

v

inf J(k) + 2d/3
keRK —

* * *
= J(k ) + 2d/3 for some k €8

ey m P emmmmen .ty

bk s e e



(3)

Similarly

* *
I ) < I + a4/

*
=) Jn(’lg_) < J“(_l_c') for any k ¢ K

Thus

inf Jn(_lg) = inf Jn(lt_)
_l_c_e" _lg:K

for all n > N.

*
Since Jn(') is lsc and K is compact, by Theorem 7-1, Sn exists

such that

* * *
k €68 = J(k) = infJ (k) = inf J (k)
n n n-n kekK n-— kel ne=—

3 * * . 3
Now, since SnC K and S C K, K compact, Condition (1) of Theorem

7-4 is satisfied,

Since J () » J(+) uniformly on T, it follows from Lemma 7-3 that

Conditions (2) and (3) of Theorem 7-4 are satisfied also.
Consequently, it follows from Theorem 7-4 tha"

x *

Sn +8Cs
and that

. * ] * *
rl‘:g\ 3 G ) tl‘:g e ) = k)

* * * %
where k € S and ke § ,
-0 n -

56




Since it was the difficulty of dealing directly with the cost function
J(¢) that motivated the design procedure considered here originally, it is de-
sirable to have an optimality theorem that establishes the results of Theo-.

191
e
A
[

E rem 7-6 on the basis of the properties of the approximating functionals
: {Jn(°)}. Because of the uniform convergence requirement imposed on the se-
v quence {Jn(°)}, it is not too difficult to establish such a theorem, on the
: basis of the following lemma.
; Lemma 7-4
f 1f Jn(°) is lsc on the closed set T for all n and the sequence {Jn(o)}
2
3 converges to J(¢) uniformly on compact subsets of ', then J(¢) is lsc.
Proof
; (1) To prove J(+) is lsc on T, it must be shown that given any k € T
: and any £ > 0, there exists n > 0 such that
5 kel [[k-x]|] ¢ n = 3 2 3k -¢
A
3 (2) To accomplish this, consider the set
g R = keT| |Je-k| <D
.,
= Ty |[k-k) £ B

which is compact since ' is closed,

(3)  Thus, Jn(') + J(+) uniformly on K so that there is ‘some integer N
such that n > N = 'Jn(l_c_) - J(_lg_)l < E/3 for any k € K

(4)  Since Jn(') is lsc on I', hence K, there is some § > 0 such that

R ke, ||_15_-5|| L6 = 3 2 JN(Q) - £/3
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Thus, let n = min (1,8) so that if ke T, ”_l_c_ -_k_“ £ n then

Iy > Ik -&/3  (by (3))
> 300 - 2/3 (by ()

Ik - £ (by (3))

v

=> J(+) is lsc on T. ]

Combining the results of this lemma with those of Theorem 7-5 and the
definition of a semicoercive function yields the following optimality theorem.

Theorem 7-7

1f the following conditions are wmet:

(D
(2)

(3)

(4)

then

(5)

)]

(8)

Proof

(1)

' is a closed set.

Jn(°) + J(¢) uniformly on compact subsets of T,
Jn(_lg) > Jo(_lg) for all k € T for some semicoercive function J0(°).

Jn(°) is lsc for all n,

All global infima of Jn(') and J(¢) nccur on some compact set K,

. * %
ie., s, s C K.

. * . * * * L
Lin J k) = Lim Ik ) J(k') vhere k €5 , k €S,

By Lemma /-4, since Jn(') + J(+) uniformly on compact subsets of

T and Jn(°) is 1sc on 'y, J(+) is lsc on T,
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o (2) since J,(-) is semicoercive

lim JO(—)

el l>= {lel] = °

for some a > 0. In particular, there is some B > 0 such that “lc_”

; >8 = 3ok > al2 ||x]].

; (3) Now, pick amny ky € T and let

;

B' = max (B’ “:15") * H!soll,)

so that if [|k|| > 8' then

:
. ® 2 3| > % 2wy

(4) Next, define K = {k ¢ I‘| HEH £ R'} and note that for any n

3 inf J (k) = inf J (k) > dnf Tk > 23(kj)

4 oh 151G | |>s*

4 Further, since Jn(}_co) > J(l‘.o)’ there is some integer N such that
"y : n > N o= | Gk,) - Ik,) < L) = 3k < 2k
E n =0 -0 - 2"'=0 n=-0" - 2°'=0

Thus
inf Jn(_lg) > Jn(l_go) pd ml§ Jn(lt_)

k¢K ke

*
so that Sn C X for all n,
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(5) Similarly, since J(¢) is lsc and K is compact, J{(+) achieves its

*
global infimum over K on some set S C K. Also, for any k ¢ K

J(k) = rlzig J R 2> 23k > (k) > i?lg J(k)

so that all global minima of J(¢) occur on K.

(6) Consequently, Condition (5) is established, and Conditions (6) and
(7) follow from Theorem 7-6,

7.5 Summary of Convergence Conditions

The results presented in this section, culminating in Theorem 7-7, pro-
vide sufficient conditions on the set T' of admissible compensator designs and
the approximating costs {Jn(°)} to guarantee that the four fundamental ques-

tions raised in the introduction have (approximately) afiirmative answers.
Specifically, these conditions guarantee the following results:

*
(1) A set S of optimal compensator designs for the distributed param-
eter plant P exists,

*
(2) For every n, a set S, of optimal compensator designs for the fi-

n: te dimensional approximating plant Pn exists,

*
(3) The sequence {Sn} of sets of optimal designs for the plants {Pn}

converges to a set S of optimal designs for the distributed param-
eter plant P,

Several important points should be noted regarding these results. First
the assumption that the set T' of admissible compensators is closed is essen-
tial., 1In particular, this requirement is imposed to avoid the possibility
that inf J{k) exists but is not achieved on I'. A simple illustration of this

kel
is the following: minimize J(k) = -k over I = (~»,0), Here

inf J(k) = 0
kel

even though J(k) > 0 for all k ¢ T,
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This example i3 unrealistic in certain respects, however, since it is to
be expected that the definition of I' will somehow reflect a stabilizability
requirement and that J(k) will approach +° as k approaches the boundary of T,

A more representative example is therefore the following: minimize

Jk) = k over I = {k = (kl,kz) - < k,,k, < 0}

Here, for any fixed ks J(k) + += as k2 + 0™ and similarly for fixed ky » J(k)
> +o ag kl + 07, Further, this function is coercive, suggesting it shcu d

achieve its infimum o~ver ' on some compact set C C T, Note, however, that for
any fixed k2

. 2
nf Ik, ,k,) = k
k,€(~,0) 1772 2

1 2

costs {J(En)} = {l/n2} which converges to 0 as n + =, However, for any k € T,

when k, = k,. Thus, the sequence {5“} = {(~1/n,~1/n)} yields the sequence of

J(k) Z‘ki >0, ing J(k) = 0 is never achieved since the minimizing sequence

€
{(=1/n,-1/n)} converges to a limit outiv:ds [, Consequently, since the set A
of stabilizing compensators meeting any particular structural constraint is
usually an open set (correspond -5, to the fact that the root lccus is continu-
ous), it is clear that I' mus* be taken as some closed subset of A, Physical-
ly, this corresponds to ''.. . position of some minimum stability margin or
some other standard of 7::ep ubility like that considered in Reference 7-9.
Another possibility wou.t *¢ to restrict the optimization a priori by placing
explicit bounds on each component ki of the parameter vector k. Such a

restriction would further guarantee that the set I' is compact, which makes
the results of Theorem 7-5 directly applicable,

The uniform convergence requirement on the sequence {J (+)} is also ex-
tremely important, as illustrated by the example in Figure 7 2, Here, J (k) >
* * *

J(k) for all ke R' but K = 2 and J(k') = 1 vhile k. = 1/2n and {J_ (i)} = 0
* *
for all n. Thus, the sequences {kn} and {Jn(kn)} both converge to well

* *
defined limits that are not k and J(k ), respectively,
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The requirement that Jn(') be lsc for all n is not particularly restric-

tive. Specifically, in most practical compensator design problems, the cost
functionals are chosen to be differentiable so that gradient-derived necessary
conditions for optimality or gradient-based computational algorithms may be
used to compute the optimal compensator parameters. Cousequently, Jn(') will

normally be continuous and thus lsc.

Assuming all of these conditions are met, it is important to note that

*
they only guarantee the convergence of the sequence of sets {Sn} into the set
* * *
S . If S consists of a unique optimal design k , then any sequence {kn} of
* *
elements of {Sn} is guaranteed to converge to k if the conditions of Theorems

*
7-5, 7= or 7-7 are met., If, however, S contains more than one optimal de-
* *
sign, then the limit of the sequence {Sn} need be only a subset of S . This

point is illustrated by the following example:

*®=-1 , k<-1
k+1l , -1<k<0

J(k) =
1-% , 0<kXl
k-1 , k>l
k-1 -4 , k< -1
'n —
1+ ;ﬂ k+1 ,-1<x<0
Jn(k) =

Note that onmly Jn(k) - J(k)l-s 1/a for all k ¢ &' so Jn(') + J(+) uniformly
on Rl, but while J(k) exhibits minima at k = %1, Jn(k) exhibits a unique

. * *
global minimum at k = -1 for all n. Thus, I {-1}, s = {-1,1}, so that

* 0~ * - *
Sn'*SCS bur S # 8§ .
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Finally, note that the convergence conditions developed here are only
sufficient and not necessary. In fact, it would appear to be very difficult
to develop any necesary conditions for convergenée, as the following example
illustrates,

Suppose J(k) = 'kl and take

(1+¢+2) €| . 1t n oad
J (k) =
" (1 -¢+ %) Iki , if n even

for some ¢ > 0, Clearly both J(k) and Jn(k) exhibit unique global minima at

* % * %
k = 0 for which J(k) = Jn(k) = 0. Thus, k.n + k and Jh(kn) + J(k ), but the
sequence of functions {Jn(-)} does not converge to anything anywhere except at
k = 0.

7.6 Conclusions

The results developed are general enough to apply to a wide variety of
fixed-form compensator design problems. Current efforts are aimed at special-
izing them to the optimal output feedback compensator design problem that
originally motivated these efforts. In particular, the following questions
are curxrently under active investigation.

(1) How can the conditions of Theorem 7-7 be interpreted physically?
It is possible that approximation results for strongly continuous
semigroups can be used to guarantee that these conditions are
satisfied for output feedback control of flexible structures,
subject to certain conditions on the inherent damping in the
structure,

(2)  For problems in which the convergence conditions are met, what
factors influence the rate of convergence? This question is of
considerable practical importance because the rate of convergence
determines how many modes must be retained in a finite element
model of a structure to provide a reasonable basis for control
system design.
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SECTION 8

LARGE-ANGLE SPACKECRAFT SLEWING MANEUVERS

8.1 Intgg§uctio§

The problem of large—angle maneuvers for flexible spacecraft continues
te be of interest in the aerospace community. This section develops a num-,
ber of extensions to the work first reported in Reference 8-1. In particu-
lar, this section presents techniques for improving the optimal torque pro-
files by

(1) Allowing the solution process to determine the optimal terminal
boundary conditions for the maneuvers,

(2) Developing a control-rate penalty technique for producing smooth
control profiles,

Several example maneuvers are provided that demonstrate the practical appli-
cation and utility of the techniques developed herein.

This section is presented in five parts. Section 8.2 treats the dis-
tributed contrcl problem and develops the techniques for handling slewing
maneuvers when the final angle for the maneuver is to be determined as part
of the solution. The results of Section 8.2 are appropriate for maneuvers
where the final angular rate, rather than the final orientation, is impor-
tant,

Section 8.3 treats the optimal distributed control problem and devel-
ops a control-rate penalty technique for smoothing the optimal control
torque profiles. The contrcl designer gains the ability to specify the ter-
minal control state and control rates as a by-product of the control-rate
penalty technique. In addition, Section 8.3 combines the free final angle
problem of Section 8,2 with the control-rate penalty technique.

Section 8.4 develops techniques for solving a single~axis retargeting
maneuver for a rigid spacecraft. Computational algorithms are proposed for
handling systems modeled by nonlinear dynamics and time-varying weighting
matrices in the performance index.

Section 8.5 presents the results of a preliminary study of slewing ma-
neuvers for the ACOSS Model 2. All example maneuvers are presented in Sec-
tion &.6.

8.2 Free Final Angle Optimal Slewing Maneuvers

The specific model coneidered (see Figure 8-1) consists of a rigid hub
with four identical elastic appendages attached symmetrically about the cen-
tral hub. A single-axis maneuver with the flexible members restricted to
displacements in the plane normal to the axis of rotation is the only case
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considered. Furthermore, the body (as a whole) is assumed to experience
only antisymmetric deformation modes (see Figure 8-2). The distributed con-
trol system for the vehicle consists of

(1) A single controller in the rigid part of the structure.

(2) Four appendage controllers, one assumed to be located halfway
along the spen of each of the four elastic appendages,

{U3,Ug,.. ., Ug} = SET OF DISTRIBUTED CONTROL TORQUES

Figure 8-1, Undeformed structure.

The extension to the case of multiple controllers along each appendage is
straightforward; however, in Section 8.2 only the single appendage-
controller case is presented.

The formulas for large-angle maneuvers presented in this section are
developed in physical space, because the free final angle transversality
conditions are understood most easily in terms of physical coordinates.

8.2.1 Eqyuations of Motion

For the vehicle shown in Figure 8-1, the equations of motion can be
obtained from Hamilton's extended principle [8-2], leading to

~ T. % oo T o0 soT %
(1 -nwun)e + My~ 260 M n up + by, (8-1)

[ Py «2 *
%no + Mnn-'l + [Knn + 0°M ]p_ Fu, (8-2)
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Figure 8-2. Antisymmetric deformation.

8.2.2 State Space Formulation

Referring to Eq. (8-15) in Reference 8-3, the linear time-invariant

form of Eq. (8-1) and (8-2) follows as

ME + Kb = Pu (8-3)

where

68




LG

a3

o Ty T

2t At

oo

L N

s antin:

[

N TR S0

2

T

TS ,,W}yg‘

ad - S iamatt . NN TR AT I ST T L .
1 4

P =
9 F

o= [on]

- T

v = [ul uz]

M = ML (positive definite)

K = KT (positive semidefinite)

Defining the state variable subsets as

L, =z I, = ¢

[ - = —_l -
L= £, = g

lpy

Letting I = [EE Eng, the state space equation becomes

L = AL+ Bu

where
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8.2.3 Fixed Time Free Final Angle Optimal Control Problem

8.2.3.1 Statement of Problem

The rotational dynamics of a flexible space vehicle, restricted to a
single-axis large-angle maneuver, are comsidered where the system dynamics
are governed by Eq. (8-6). The optimal control problem is to find the
solution to Eq. (8-6) that minimizes the performaunce index

t
1 T .T
J = 35 tf [.\_1_ wuug_ + }_WSSE_] dt (8~7)
0

and satisfies the specified terminal states, where Wuu is the control

weighting matrix and wss is the state weighting matrix. The specified ter-

minal states are given by

g = (8 nfelt i o= (B Tl (8-8)
ne = oakep) i< (8, 2Tt (8-9)

where the constraint
ale) = ale) = 0

18 imposed in Eq. (8-9). 1In addition, the final angle ef is not specified

since it is to be determined as part of the solution.

8.2.3.2 Derivation of the Necessary Conditions from Pontryagin's Principle

In preparing to use Pontryagin's necessary conditions, the Hamiltonian
functional

Ro= H{a™ u+tfw z) + ATz + Bu) (8-10)

is introduced, where the A's are Lagrange multipliers (also known as costate
or adjoint variables). Pontryagin's principle requires, as a necessary
condition, that the A's satisfy costate differential equations derivable
fronm 70
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— g S 9=

and that the conr "ol torque u must be chosen at 2very instant so that the

Hamiltonian of E¢. (8-10) is minimized; that is, for continuous u one
requires that

%-*—'- = 0 = W u+BTA (8-12)
u - uu— -

from which the optimal torque is determined as a function of the costate
variables as

u = -W  BA (8-13)
- uu —

Substituting Eq. (8-13) into Eq. (8-6) yields the state differential equa-
tion

£ = AT - BW lBTA (8-14)

Because the final angle is assumed to be free, the transgversality

condition providing the natural boundary condition for the problem follows
as

T
(e 6T, = 0 (8-15)

where A(t) is the costate vector in physical space and 6££ ig the variation

of the physical space state at the final time. Since Gf is free and

O¢r Do and‘if are specified, qgf in Eq. (8~15) can be written as

sz, = [o0, ong 66 6n1]" = [s0, 0" 0 0"]F (8-16)

Upon introducing Eq. (8-16) into Eq. (8-15), the desired free final
angle transversality condition follows as

Al(tf) Gef = 0
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Al(tf) 0 (8-17)
since 66f is arbitrary, where

T
A= ayon L AT = e D)

and Al dinotes the costate variable for the rigid-body rotation angle 6.

Thus, Al(t ), Bf, Ng» and 1 -f provide the 2N final time boundary condi-
ticns necessary for specifying the optimal control solution of Eq. (8-11)
and (8-14), when fixed-time free final angle maneuvers -are of interest.

8.2.2.3 Solution for the .Initial fostates

In Eq. (8~11) and (8-14), the initial boundary conditions for I are
completely known while for A they are unknown, and the firal boundary condi-
tions for I and A are only partlally known., Thus, the applicaticn of Pon~
tryagin's principle has led, as usual, to a two-point boundary-value problem
(TPBVP). To sclve Eq. (8~11) and (8-14), the merged state vector is defined

as

y = [F A7) (8-18)

from which it follows that
X = nx (8-19)

where
o -y leT
Uu
R =
- -AT
38

=  constant ccefficient * trix
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Since Q is constant, it is well known that Eq. (8-19) possusses the
solution

Q(t-to)
X(t) = e X(ey) (8-20)
Q(e-t,)
where e is the 4N x 4N exponential matrix.
Qlt-t,)
The solution for e is obtained conveniently by a variety of

methods discussed in either Reference 8-3 or 8-4. Upon setting

Q(t-to)
e a ¢(t,r0)

and writing Eq. (8-20) in partitioned form, one obtains

I(ty) bos ocp ] 2(O)
= (8-21)
Aler) Oz ¢l (ACO)
L
or equivaleantly
z () o L0 o A SR R PPN
1 f LI, ZEoy Ik DN - 1
T, (t,) ) A ) e . e d z,.(0)
LU Lonty LonPay Ianh Zontan 2N
A () ® R ) I ) A, (0)
1 AT, Aoy AAy AAyy 1

-
.
.
-
.
.

-
.
-
.
~e
LY

A A s o o A A AzN(o)

(8-22)
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Observing that the known quantities in Eq. (8-22) are Xz(tf),...,EZN(tf),
Al(tf), and 21(0),...,22N(0) and carrving out the partitioned matrix multi-
plication to solve tor Zz(tf),...,tzu(tf), Al(tf), the equation dafining the

solution for Ajo) follows as

[AIACQ) = b - [BIZ(0) (8-23)
where
¢ * - * o
LA ZyMon
A= |, ‘
° ] 1 ] > o
Lol LonMon
<) L] L] L[] °
__AlAl AlAZN__
L[] * L] °
L LN
= Op pocc 9% g
aN%) a2
o L] * L ] °
AT AT
| MA 12|

b= [ry(ey) won By(e) Al(tf)]T

Equation (8-23) is in the standard form for the linear algebraic equa-
tion Ax = b, which can be solved via Gaussian elimination for x to yield
A0).

The optimal control time histories are obtained upon integrating
Eq. (8~11) and (8-14) subject to I(0) given by Eq. (8-8) and A(0) given by
Eq. (8-23). Equation (8-Z3) provides the initial costates in physical
coordinates. However, if che maneuver simulations are modeled in modal
coordinates, the following two transformations permit the use of the results
of this section.

First, the modal space state transition matrix, ¢(tf,0) is mapped to
physical space via the transformation
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Q(tf,o) = c—)¢.(tf,0)o (8-24)
where

E 0 0 O ='
o = |0 E 0 0

0 0 ME O

0 0 0 WME

Y anand

EM 0 0 0

T

o1 0 EM 0 0

0 0 0

| 0 0 0 gl

The derivation for the transformation matrix, O, can be found in either
Reference 8-5 or 8-5.

Second, introducing the required partitions of Eq. (8-24) into

Eq. (8-23) and solving for AL0), the modal space initial conditions are
obtained from the transformation equation

5(0) £(0)

-1 (8-25)
AQ) AC0)

vhere A(0) is the modal space initial costate. The optimal control time
histories for wodal space are obtained uypon integrating the modal space form
of Eq. (8-11) and (8-14) subject to the initial conditions provided by

Eq. (8-25).

Case 1 in Section 8.6 provides an example maneuver,
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8.3 Control-Rate Penalty Technique for Optimal Slewing Maneuvers

Introducing control-rate penalties into the performance index accom-
plishes two things. First, the jump discontinuities in the control time
history are pushed into the higher control time derivatives. In other
words, the control-rate penalties act like control smoothing penalties. As
a result, the frequency content of the resulting control profile is signif-
icantly reduced; thus, the vehicle's higher frequency modes are excited only
mildly by the smoothed control profile.

Second, the use of control-rate penalties permits the ccntrol designer
to specify the terminal control state and control time derivatives. For
example, in many reasonable maneuvers, it is coanvenient to specify that the
slewing control system is turned off both initially and finally., Of course,
depending on particular mission objectives (as shown in the retargeting ma-
neuvers of Section 8.4), other terminal boundary conditions for the coatrol
system are possible. To fully aporeciate the significant gain in perform-
ance chat the control-rate penalty technique permits, compare the example
maneuvers of Section 8.6 with the results presented in Section 8 of Refer-
ence 8-1,

The vehicle depicted in Figure 8-l is assumed to be modeled for the
results of this section. Only the case of a single-axis maneuver is consid-
ered, where the elastic displacements occur in the plane normal to the axis
of rotation, and only antisymmetric modes are mod:led (see Figure 8-2),

8.3,1 Problem Formulation

From Eq. (8~3), the equations of motion can be written as
M + R = Pu (8-26)

As shown in Reference 8-1, Eq. (8-26) can be cast iato state space form,
through transformation sequences (g + t -+ 34) and (34"32 + 8), leading to

s = As + By (8-27)

The slewing maneuver problem is to find the solul ‘on to Eq. (3-27) that
satisfies the terminal boundary conditions
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(8-28)

fop nTe ]t 2, = [ et oY - ey

(fal
+h
n

(8-29)

for 1 = 0,1,...,k-1, where

n(ey) = neg) = 0

9_(1)(‘0) = .‘_’.(i)(tf) =0
with
9.(0) =4
) i
dt

The optimal control problem is to seek the torque history gﬁt) that will
generate an optimal solution of Eq. (8-z7), initiating at Eq. (8-28) and
terminating at Eq. (8~29), that minimizes the performance index

t

: k
1 or,
b= b[ (8,8 + 120 o wiig( ) ae (8-30)

where wss is a weighting matrix for the states, ”ou is a weighting matrix
for the control, and wli for 1 = 1,...,k are weighting natrices for the

control rates, With k equal to zero, the performance index penalizes only
the states and controls, and thus the control problem corresponds to a prob-
lem of minimum control energy, kinetic energy, and elastic potential ener-
gy. The solution for this problem was addressed in Reference 8-1. With k
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greater than zero, the performance index penalizes the states, controls, and
time derivatives of the comtrols., The example maneuvers in Section 8.6 dem-
onstrate that including control-rate penalities leads to much smoother modal
amplitude and control torque time histories, Additional example maneuvers
can be found in Referemce 8-6. The flexible~body response is improved
because the vehicle's flexural degrees of freedom are very sensitive to
discontinuities in the control time histories; hence, by using the formu-
lation in this section, the jump discontinuities in the control at t = 0 and
t =t are moved to the higher coutrol time derivatives, which improves

overall system performance.

8.3.2 Necessary Conditions for the Optimal Control .Problem

Adjoining the equation of motion, Eq. (8-27), as a differential equa-
tion constraint to the performance index in Eq. (8-3Q), the augmented per-
formance index is given by

t

n £ k . .
J = | L%[GTW ) u(l)TW..u(l)] + AT[As + Bu ~ s]} dt
- g~ b = 1i= -l = -
0 1=0
(8-31)
where the )A's are Lagrange multipliers. Using standard calculus of
variations techniques the tirst variation of J follows as
t
- f k . .
63 = | {GsTW s+ ) Gu(l)TW..u(l) + GXT(AS + By ~ s)
0 = ss= ..y — il = T T -
+ AT(ASs + Béu - 83)} dt (8-32)

Integrating the terms containing Qé and 63}1) by parts for i = 1,...,k leads
to

§s dt {8-33)

and
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0 - 11~ ’1 11—- 0
j
Y .
+ DY cg_Twii_g(“) dt (8-34)
0

since s and u( i) (for i = 0,1,...,k=1) ave specified both initially and
finally in Eq. (8-28), the terminal variational terms in Eq. (8-33) and
(8~34) are

8s(ty) = 8s(t.) = 0

63(.1"'5)(:0) - Gg(i-j)(tf) - 9_ (j = l,ooo,i)

(8-35)

where t, = 0, Substituting Eq. (8-33), (8-34), and (8-35) into Eq. (8-32)

0
yields
L4
3 £ (21) T
83 = f {[Z(l)w M6u+[w s+ A + 4T o8
0 1«0
+[A§“+ Bg_-_é]T u-)_‘_} i (8-36)

Since Pontryagin's principle requires the first variation of J to be
zero, the necessary conditions follow as

8 = As + By (8-37)

i T

A= W s-A) (8~-38)
I i a o't o« gy (8-39)

i=0
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In order to cast Eq. (8-39) into the standard space form, the control
state is defined as

T T T 1T
U = [21 Uy .. Eik] (8-40)

where
D=2, 0

and u; is an Nc x 1 vector for 1 = 1,2,...,2k, U is a Zch x 1 vector, and
Nc denotes the number of irndependent controls., Referring to Eq. (8-40),

Eq. (8-39) can be written as

U = cu+m (8-41)
where
0 1
c =
Ca) a9
N S |
€91 D™ W0 M0
o (k2 -1r . .o N .
Cyy D [0 vy, to LMy, 20 b0l (=D wk_l,k_lzo]
and
) *
0
D =
k+l -1 _T
(-1) wkkB

where 0% is a (2k - I)Nc X 2N null matrix
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Defining the E matrix as follows

E = (38O (8-42)

and substituting Eq. (8-40) and (8-42) into Eq. (§-37), the state, costate,
and control differential equations follow as

State equations

s = As +EU (8-43)
Costate equations

. T

A= =W s = A (8-44)
Control equations

U = Cu+D\ (8-45)

8.3.3 Solution for the Initial Costates and Control Time Derivatives

In Eq. (8-43), (8-44), and (8-45), the boundary cond1t10us for g are
known both 1n1t1a11y and finally. Those for U are split so that half are
known at the initial time and half are known at the final time, Those for Y
are totally unknown. Thus, application of Pontryagin's principle has led to
a TPBVP. To obtain the solution for Eq. (8-43), (8-44), and (8-45), the
merged state vector is written as

x = [f AT o) (8-46)
from which it follows that
X = o (8-47)
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where

A 0 E
Q = -wss —AT 0] = constant coefficient matrix
0 D C

Since @ is constant, it is well known that Eq. (8-43) possesses the solution

ﬂ(c-co)
X(t) = e _)g(to) (8-48)

where et is the (4N + Zch) x (4N + 2ch) exponential matrix which is ef-

ficiently obtained from a Pzie series expansion. Upon setting

Qt-t,)
e 0" . ¢(t,t0) and writing out Eq. (8-48) in partitioned form, one finds
z(tf) %ss %51 ¥su ¥su 5(0)
a b
pACTY) )8 2% *ru *ru M0)
a b
Ea(tf) ¢u 8 ¢u A ¢u u ¢u u Ea(o)
a aa ab
u (t.) ¢ ¢ ¢ ¢ u, (0)
b f u, 8 ubx uu uu, f —b
— -
(8~49)
where
T T T1T
£u o= [31 Yy e Ek]




where u is kaown both initially and finally and R is unknown both ini-
tially and fianally,

Observing in Eq. (8-49) that the known quantities are s(0), _s_(tf),
y_ﬁ(O), and _%(tf) and carrying out the partitioned matrix multiplicationm,
solving for _g_(tf) and l’-g(tf)' one obtains

£ ¢)ss ¢8‘Ja '9'(0) ¢s)\ ¢ 2‘-(0)

0
-‘-J-a(tf) ¢uas ¢uau Eﬂ(O) ¢ua)\ ¢ -Eb( )

(3-50)

Setting y_a(O) = -‘ig(tf) = 0 (i.e., turning the control system off initially

and finally) in Eq. (8-50) (see Eq. (8-28) and (8-29)) and solving Eq. (8-50)
for 2(0) and be(O), one finds

LI %“b | };(0)1 8¢ ~ ¢, .8(0)

(8-51)

u 8
&

LN % u _gb(O)’ - ¢ 8(0)
a a

Equation (8-51) is in the standard form for the linear algebraic equatiom
Ax = b, which can be solved via Gaussian elimination for X, to yield _{_(0)
and _l_l_b(O). The optimal control time histories are obtained by integrating

Eq. (8-43), (8-44), and (8-45) subject to the given state and control
boundary conditions s(C) and _\_13(0) and the costate and control rate bound~

ary conditions provided by Eq. (8-51). Cases 2 and 3 in Section B.6 present
example maneuvers using the formulations of this section.

8.3.4 Free Final Angle Maneuvers with Control-Rate Penalties Included

Since the analytical developmencs €or solving the problem of free

final angle maneuvers are similar %o those shown in Section 8.2, only key
equations are given.
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As shown in Secticn 8.2, the boundary condition for the free final
angle ccrresponds to setting the final value of the costate for the
rigid-body angle to zero (see Eq. (8-15) and (8-16)). As a result, the set
of prescribed boundary conditions follow as

gy = log n (e ]’ iy = [y nte)l" Sa, T )
(8-52)
ne = altp) i, o= i)t 8, " o (t)
(8-53)
and
Al(tf) = 0 (8-54)

where we impose the requirements ti.at 3ftf) = ﬁﬂtf) = 0 in Eq. (8-53) and
Ea(to) = ga(tf) = 0 in Eq. (8-52) and (8-53).

Using the performance index of Eq. (8-31) and formulating the solution
in physical spuce, the state, costate, and control differential equatioas
follow as:

State equation

I = AL +EA (8-55)

Costate equation
i o= ;ws - At (3-56)

Control equation
. U = Cu+ DA (8-57)
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Writing the merged state vector as

T T]T

x =2 Ay

the solution for Eq. (8-55), (8-56), and (8-57) can be written as

where @ is defined in Eq. (8-47). Setting e
th- partitioned mwatrix multiplication, solving for Zz(tf),...,z

Q(t-to)

Xe) = e X(t,)

Q(t-to

2N

(8-58)

(8-59)

= ¢(t,t.) and performing

(t.),

Al(tf) in Eq. (8-59), the linear equation to be solved for A{0) and-gb(O)

follows as
where
DO
OQZNAI .
LIS UWW
°u81A1 *t
W

{4la = b - [Blc

Palaw EaU
¢;2NA2N <l”izn“bl
¢A1A2N %l“bi
ou l1\2N ualubl
¢;avA2N ¢;a ubl
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¢ ] L] * ¢
8% Llon
¢ * L] - 0
R Lontan
[B] = |¢ el b
MEy A Zon
) &
u I * u I
1 1 al 2N
) .. &
u ):1 ua ZZN
v \YJ
. T
a [Al(O) coe Mg €0 A (0 ubl(O) ubv(o)]
T
b = [Ez(tf) P (R N (W) ual(tf) uav(tf)]
} : T
c [):l(o) cor Do (0 L, (0) ual(O) uav(())]
v = klNc

Eq. (8-60) is in the standard form for the linear algebraic equation
Ax = b, which can be solved via Gaussian elimination for x, yielding A_(O)
and _\_xb(O).

The optimal control time histories are obtained upon integrating
Eq. (8-55), (8-56), and (8-57) subject to L(0), 9_8(0) given by Eq. (8-52)
and A(0), gb(o) given by Eq. (8-60).

Ey. (8-60) provides the initial costate and control rates in terms of
physical space coordinates. However, if the maneuver simulations are

modeled in terms of modal space coordinates, the following two transforma-
tions permit the use of the results of this section., First, the modal space
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state transition matrix, ¢(tf,0)} is mapped to physical space via che trans-

formation
o -1 (8-61)
tf,O) = 0¢(tf,0)0
where
E 0 0 0 0
0o E 0 0 0
. 0O 0 ME O O O
0O 0 0 ME O O
6o 0 0 0 I 0
o 0 0 o0 0 I
ETM 0 o o0 0
0 EM 0 0 0 0
o7l -« |o o E 0 0 0
ET 0 o0
0
0 I

Second, introducing the required partitioms of Eq. (8-61) into
Ea. (8-60) and solving for A(0) and Eb(O)' the modal space initial condi-

vions are obtained from the transformation

( )
s(0) £(0)
) A(0) A(0) i>
Y "I
’ gﬂ(O) = 0 ga(O) (8-62)
\ gb(O) Eb(O))

The modal space optimal control time histories are obtained upon inte-
grating the modal space form of Eq. (8-55), (8-56), and (8~57" subject to
the initial conditions provided by Eq. (8-62), Case &4 in Section 8.6 pro-
vides an example maneuver using the formulations of this section.
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8.3.5 Selection Technique for Weighting Matrices wss and wii in the

Control-Rate Penalty Formulation

It has been found that the particular choice of weighting matrices
significantly affects the computational effort and resulting maneuvers. A
brief study of the effects has been performed.

In the example maneuvers of Section 8.6, the following block diagonal
forms of the weighting mstrices have been used

W = W (2N x 2N)
ss ss

107° 0
W.. = w.. (N x N)
11 11 c c
0 1

where Weer Yip are scalar quantities and p is defined in the text that

lo
l»—c

follows,

Since the problem being solved is a slewing maneuver, the rigid body
angular displacement is not penalized. Hence, the first element of wss is

set two orders of magnitude less than the other diagonal elemznts. The
first element of Wss is not set to zero because this causes repeated zero

eigenvalues in @ of Eq. (8-47), which can potentially lead to numerical
diffuclties in calculating the state transition matrix.

The value of p in wii determines the participation of each set of

independent controllers in the slewing maneuver. Since it is desirable to
have the rigid-body torque execute most of the slewing maneuver while the
appendage torques function mainly as vibration controllers, p is set to 2 or
3 to provide a smaller penalty od the rigid-body torque.

In a preliminary parametric study, it has been found that by adjusting
the normg of the weighting matrices Wss, wOO’ and wii (for i = 1,...,k=1) to

several orders of magnitude smaller than the norm of W the eigenvalue

kk’
bandwidth of Q@ in Eq. (8~47) can be reduced significantly; thus, the sensi-
tivity of the optimal control problem decreases. However, the decrease in
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eigenvalue bandwidth of 2 is obtained at the expemnse of increased peak flex-
ural deformations during the maneuver, though the time %histories of the
modal amplitudes are considerably smoother. An asse.::nt of the impact
this weighting matrix scheme has on the unmcdeled defrrves of freedom is a
topic of further interest.

8.4 Single Axis Retargeting Maneuvers for a Rigid “pacecraft

The problem addressed in this section is a 8”1 le~axis maneuver of a
rigid spacecraft which is slewing to engage a mov-:, target. The retarget-—
ing maneuver is complicated by the fact that the :.llowing parameters and
boundary conditions are unknown:

(1) The maneuver time, (t:f - to).

(2) The final engagement angle, ef.

(3) The final engagement angular rate, 3£.

(4) The final control torque, v

(5) The final c.atrol torque icte, U

The performance index selected for tha mptimal control problem repre-
sents a tradeoff between elapsed maneuver time, state, and control-rate
penalties, A rigid spacecraft model is used instead of a flexible vehicle
to simplify the calculations and provide useful insight for solving the
flexible body case. In the developments Chat follow, the target trajectory
is assumed to be known. Since work on tais topic is preliminary, only the
solution strategy is preseated.

The solution procedure consists of the following three steps. First,
the linearized free final time problem is solved. Second, the nonlinear
solution is obtained using the final time and initial costates from the
first step as initial iteratives, Third, a grid search is performed in time
to find the final time that minimizes the performance index for the non-
linear problem,

The target trajectory is assumed to be

-1 (g + V(e - £y))

X

e(t,to) = tan (8-63)

0
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which represents a linear flyby target motion, where Xys Yoo and V are

constants that correspond to the target's initial position and velocity (see.
Figure 8-3).

r ol 4

A\ CONSTANT TARGET
VELOCITY AND
DIRECTION

™ H0STION ey 15

PR xqr Yo!
Ve
P
7
”
7
/ L]
_ % INITIAL TARGET ANGLE
Vo - X

Figure 8-3, Model of a linear flyby target motion,

8.4.) Solution for the Linearized Free Final Time Problem

The solution of the linearized problem provides estimates of the op-
timal final tiwe, initial costates, and control time derivatives for the
nonlinear solution.

The state space form of the equation of motion for the linear problem
is given by

= (8-64)
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where 8) is the angular displacement, s, is the angular velocity, u is the

2
control torque, and I is the moment of i-ertia of the vehicle, The optimal
control problem is to seek the solution to Eq. (8-64) that

(1) Minimizes the performance index

f .
3 = [ [a+ %woou2 + %—w“u2 + %- wn’ﬁz] dt (8-65)
0

whare a is a weight penalizing elapsed time, and “oe' “11' wzz

are scalar weights on the control, first, and second control
time derivatives, respectively,

(2) Satisifies the terminal constraints

s, (t) = s s (t.) = s (8-66)
170 1O 20 20
u(tg) = 0 &(co) = 0 (8-67)
s (tg) = Aleg,ty) g,(t.) = é(tf,to) (8-68)
u(tf) = Ie(tf,to) u(tf) = Ie('cf,to) (8-69)
where
t. = free (8-70)

and e(t,to) is the angular target motion given by Eq. (8-63).

The final boundary conditions given by Eq. (8~69) are imposed iu order
to establish a terminal torque and torque rate that will allow accurate
pointing and tracking of *the target at the end of the maneuvei. The target

motion in terms of G(C,to), 5(t,to), §(t,t°). and‘g(t,to) is assumed to be

available from some estimation process, for practical applications.

Application of Pontryagin's principle leads to the following necessary
conditions
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s, = B (8-71)

81 89
éz = u/I (8-72)
il = Q (8-73)
Ay = M (8-74)
” e _>‘2 *
WOOU - wuu + szu = T (8-75)

On imposing the terminal constraints listed in Eq. (8-68) and (8-69), the
transversality conditions governing the optimal maneuver follow as

6, = A (e)8(tg,t0) = A (E)B(EL,E0) + A (EL)8,(2.) + Ay (Edut) /T + a
3 uguiCe) + 3w (e + 3w e) = 0 (8-76)
G, = sl(tf)-e(tf,to) = 0 (8-77)
6y = syltg) - Blte,t)) = 0 " (8~78)
G, = u(tf)—l’e’(tf,to) = 0 (8-79)

a(te) - rs<cf,:0> = 0 (8-80)

To cast Eq. (8-75) into state space form, the control state is definud
as

" uo] (8“81)
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Subject to Eq. (8-81), Eq. (8-71) to {8-75) can be writtén in the merged

state vector form

X = A& (8-82)
where
X = [s s A A u ’u u u ]T
= 1 2 1 2 ] 2 3 %
and
0 1 0 0 0 0 0 0
1 :
0 0 0 0 T 0 0 0
0 0 0 0 0 0 0 0
0 0 -1 0 0 0 0 0
A = |0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
W W
0 0 0 —g5— -—p2 0 &0
p 2
| 22 22 22 |
Since A is ccastant, it is well known that Eq. (8-82) possesses the
solution
At-t,) .
x(t) = e x(ty) (8-83)
where
A(tf"to) .
e is the exponential matrix
Setting
A(t.-t,)
£ 0
e = ¢(tf,t0)
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introducing the appropriate partitions of ¢(tf,t0) into Eq. (8-30) and re-
arranging, the linear system defining the solution for Al(tof, Az(to),
u3(t0), and ua(to) follows as

gsx ¢sub_] gl(‘)) I TR 10 -
P R, I,Eb(o) Lyltg) = 4, o3(0)
where
s =[5 s
AomDy alf
v = Ly wl

wy = [ug oy,

The optimal control time histories follow on integrating Eq. (8-82) subject
to 8(0) and ga(O) given by Eq. (8-66) and (8-67) and A(0) and gb(O) given

by Eq. (8-84).

Due to the nonlinear character of the transversality conditions, the
necessary equations are solved by iteration. Starting iteratives for the
transversality conditions are obtained by assuming that the final time is
known, As a result, a number of final time grid points are selected., At
each finsl time grid point, the optimal control solution is obtained
subject to satisfying the transversality conditions of Eq. (8-77) through
(8~80), and the performance index is computed. Once a minimum is found for
the performance index within three consecutive final time grid points, the
performance index is modeled by Jk(tg) = Cy+ Clt; + Cz(t‘;)2 where Iy de~

h

nctes the kth performance ind:x and tg denotes the % " final time grid

point. Upon solving for co, Ci, and Cz, the starting iterative for tf is
obtained by setting the derivative of Jk(t) equal to zero, yieldiag
te = =C,/26,.

Integrating Eq. (8~-82) and substituting the final states, costates,
and control gtates into Eq. (8-76) to (8-80) provides the errors in
satisfying the necessary conditions. The corrections to the initial
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costates, control time derivatives, and finai{ time are obtained from the
following equation

aC, (¢ \)
G.

2 2
-[gl_] ] AC, = Gy (5-85)
ac, G,
ACq Gs
where
e, ¢, S ¢ Cg] = [Aa(ey)  A(tg)  uglty)  u(ey) ts
3G
S 7 5 1,3 = 1yeee,5

and the desired corrections are denoted by

ACl for 1 = 1,.044,5

Using the updated final time, the terminal errors for Eq. (8-76) through
(8-80) are computed on integrating Eq. (8-82), and if necessary, the process
is repeated until the final time converges.

8.4.2 Retargeting Maneuvers with Nonlinear System Dynamics

A retargeting maneuver is considcred where the system dynamics are
nonlinear (this example is similar to the nonlinear r:exible problem shown
in Reference 8-1) and time~varying weights are included in the performance
index. Specifically, the equation ~{ motion is assumed to be given by

Is, = u - ks (8-86)

and the new performance index folluws as




o

f N
N 1 2 1. 2 1. w2 1 _ a2
J = (j) [a + 7 Wt * 5 W u + g W ET + 2 () (s, - 6)
1 212
+ 5 8(t)s, - 8)°] dt (8-87)

where

1(t) = cl(e“’- - D, 8) = 6, - 1)

and C I'y, and « are counstants,

1» Gy

The performance index now includes time-varying penalties on the dif-
ferences in angular displacement and angular velocity between the spacecraft
ad the target.,

The problem is solved as a fixed final time maneuver using the optimal
final time found in the free final time problem in Section 8.4.1. The non-
linear solution is obtained by introducing a relaxation process (see Refer-
ence 8-1, Section 8.6), where the nonlinearities are introduced slowly into
the linear solution obtained in Section 8.4.1.

Application of Pontryagin's principle now results in the following
necessary conditions

8, = s, (8-88)

u K 2
89 T~ 7 8 (8-~89)
)'\1 = =y(t)(sy -8) (8-90)
% * K
Xy -8(t)(s, - 6) - A - 2\, (--I-)s2 (8-91)
A
Wog t==-W 4 +W & = 0 {8~92)

06 1 11 22
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The terminal boundary conditions listed in Eq. (8-66) through (8-69)
are assumed for this problem, and the initial estimates for A(0) and Hb(O)

are given by Eq. {8~84). Written in merged state vector form, Eq. (8-88)
through (8-92) become

i = Ax+tob (8-93)
where
, 0
; —as%/l
3 -Y(C)(sl - 9)
; = (-8, - 8) - 2 (S)s
E 2 2 1772

0
0
0
0

and o, is the kth relaxation parameter, where the sequence of parameters

|4
{oo =0 < 9 <... K< S..1 < o = 1} has been introduced and r is preset.
The solution for Eq. (8-93) is refined iteratively using the follcwing equa-
tion
T
: 8§$
' — | Ax, = x.. - X (8-94)
8_:_:_0 =0 ~fD ~fI
where
Xen is the desired final state vector
Xer is the integrated final state vector

.. T . . .
[agf/agolT is the state ransition matrix

Ax_ is the correustion vector
97
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Assuming that [8§§[§§o]T in Eq, (8-94) can be expr2ssed in the form

-y = ¢(tf’t0)Q(tf’to) (8-95)

where ¢(tf,to) is the state transition matrix for the linear time~invariant
part of the problem, and Q(tf,to) is the state trausition matrix for the

nonlinear part of the problem, it caun be shown using Lagrange's variation
of parameters method that Q(tf,tQ) satisfies the equation

t T
3" Tty ab () Lota,t )T tg) dr
“ax
0 X
(8-96)

where the relaxation parameter, Oy has been introduced artificially. Ob-
serving that Eq. (8-96) is an integral equation for Q(t,to), and using the

method of successive substitutions, one finds the following equation

te

Q(tf,to) s 1+ okf Thty ) Eb (T):lq»(r t,) dr (8-97)
t
0

where the higher order terms in O have been assumed to be small,

The solution procedure is summarized as follows. First, the relaxa-

tion parameters o, are chosen such that {00 =0 < 9 < Op ooe < 0. = 1}.

Second, the initial costates and centrol time derivatives for the linear
golution are used as initial conditions for the integration of Eq. (8-93)
with k = 1 and Eq. (8-97). The final states and controls are compared with
the degired values at the final time, and if the terminal errors exceed a
prescribed tolerance, then corrections to the initial costates and control
time derivatives are calculated from Eq.{8-94), (8-95), and 3-97). The
integrations and corrections are repeated until the norm of the terminal
error vector is sufficiently small. The index on the relaxation parameter
is increased, and the iteration process continues until the solution for
0" ! is found. The solution for .= 1 yields the desired nonlinear
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solution, It is anticipated that Eq. (8-97) will lead %o significant compu-

tational savings when [82?(1)/Q§] is sparse.

The optimal final time for the nonlinear solution is obtained by a
grid search for the final time that minimizes the performance index of
Eq. (8-87). That is, a series of nonlinear solutions and performance
indices are calculated for different final times. A quadratic fit is then
performed to estimate the final time ~hat minimizes the performance index,

8.5 [Preliminary Study of Slewing Maneuvers for the ACOSS Model 2

Several single-axis slewins, maneuvers have been computed for a modi-
fied version of the ACOSS Model 2., The modifications, which simplify the
calculations, include:

(1) Locked isolator springs.

(2) A symmetric mass distribution for the vehicle about its center
of msss.

The '"rigid-body" torque is applied in the z direction at the ceanter of the
equipment section (node 44). The formulation of Section 8.3 is used with
k = 2 in Eq. (8-30) for the performance index. The mass, stiffness, and
actuation matrices are computed by the Dynamic Interaction Simulation of

: Controls and Structures program (DISCOS) which uses NASTRAN finite-element
data.

The solution procedure is as follows., A number of modes to be coun-
trolled is chosen. The optimal control time history is computed, using the
formulation of Section 8.3 and the mass, stiffness, and actuation matrices
from DISCOS., The control time history is then input to DISCOS which simu-
lates the maneuver and treats all nonlinear kinematic effects.

Results from the DISCOS simulations show that the uncontrolled ejn-
metric modes have small vibrations. Though the controlled antisymmetric
modes have larger peak amplitudes, the resuits show that the modal ampli-
tudes are zero at and beyond the final time of the maneuvers, which is the
expected response. An example maneuver is shown in Section 8.6, Case 5.

8.6 Example Maneuvers

This section presents example maneuvers for the formulations discussed
in Sections 8.2 through 8.5. For Cases | to 4, the geometry of Figure 8-1
is assumed with the following configuration parameters: the moment of

inertia of the undeformed structure, I, is 7000 kg-m‘; the mass per unit
length of the four identical elastic appendages, p, is 0.004 kg/m; the
length of each cantilevered appendage, L, is 150 m; the flexural rigidity of

the appendages, EI, is 1500 kg-m3/82; and the radius of the rigid hub, r, is
1 m. In the integrations over the mass stiffness distributions, the radius
of the hub is not neglected in comparison to the appendage length. The fol-~
lowing comparison functions are used as assumed modes
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which satisfy the geometric and physical boundary conditions

= ¢n' = ¢! = 0
x=r Ply=r+L, P [x=r+1
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of a clamped-free appendage. For Case 5, the ACOSS Model 2 is used where
the isolation springs are locked and the mass distribution has been modi-
fied.

In Cases 1 to 4, all the Wss matrices are set to diagonal matrices in

physical space, and then mapped into modal space using

E 0

[wss]modal ET [wss]physical

For Case 5, the wss matrix is set to a diagonal matrix in modal space. Re-

ferring to Table 8~1 and Figures 8-4 to 8-14, the _xample maneuvers are
described as follows.

8.6.1 Case 1 (Figure 8-4)

Case 1 is a 60-second free final angle rotation reversal maneuver
using the formulation of Section 8.2, The structure returns to its original
angular position at the end of the maneuver., The modal amplitudes are nega-
tive and the control torques are positive throughout the maneuver., In addi-

tion, the control torques have jump discontinuities at the initial and final
time.

8.6.2 Cases 2 and 3 (Figures 8-5 through 8-7)

Cases 2 and 3 are 60-gecond rest-to-rest maneuvers uzing the formula-
tion of Section 8.3, The states, controls, and control rates are. included
in the performance index for Case 2, while the second and third time deriva-
tives of the controls sre included additionally for Case 3. For both cases,
the control torques at the initial and final times are all zero; therefore,
they are continuous at those points. The slope of the maneuver angle verasus
time plots are very small at the initial and final times which is comsistent
with a smooth modal amplitude history. Case 3 differs from Case 2 in that
there is a 30-to-1 reduction in the first mode peak amplicude, a 2-to-1 re-
duction in the second mode peak amplitude, and a 20-to-1 reduction in the
peak tip deflection. On the other han?bocase 3 shows a !~to-1.3 increase in
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Table 8-1. Parameters used in test case maneuvers.

Case| No. of No. of 8 8 8 8
No. Modes Controls 0 0 f f wss WOO wll sz W33
Controlled (rad){(rad)|(rad)}(rad)
1 2 5 0 |-0.5 {gree | 0.5 {107%1|1 S UG, U

: 2 2 5 0 {0 « 1o 11073100l 1| -] -
; 3 2 5 o | o + 1o [107%]107%1 10701070 1
v 4 2 5 0 |-0.5 |free | 0.5 {10731710"%1}107%1| 1 | —-
] 5 2 1 o o 6o |07t %thod) 1| -
'; I is an identity matrix with the first element set to 10—2, setting a lower
9 weight on the maneuver angle.
% 1 is an identity matrix with the first element set to 10_3, setting a lower
b weight on the rigid-body control or control time derivative,

A the rigid-body peak torque requirement and a l-to-8.4 increase in the

2 elastic appendage peak torque requirement when compared with Case 2. The

i slopes of the control time history plots for Case 3 are zero at the initial
_ and final times because of the higher order time derivatives in the perform-
Tz ance index.

8.6.3 Case 4 (Figures 8-8 and 8-9)

Case 4 is a 60-second, free final angle, rotation reversal maneuver

s » using the formulation of Section 8.3.4 with the performance index penalizing

I > the states, controls, and the first and second time derivatives of the con-
- 23 trols. Compared with Case 1, Case 4 shows a 19-to-1 reduction in the first
E mode peak amplitude and a 2-to-l reduction in the second mode peak ampli-
.g: tude. The rigid-body peak torque, on the other hand, increases by a l-to-

1.3 ratio and the appendage peak torque by a l1-to-13 ratio. The initial and
final control torques are zero, and therefore continuous, while in Case 1
they are discontinuous at the initial and final times, The modal amplitude

2 and controi torque histories are much smoother in Case 4 than in Case 1.
A From these results, it can be concluded that the inclusion of ccntrol-rate
< 3 penalties in the performance index produces torque and modal amplitude time

histories which are much smoother than those produced by the formulation
B without the control-rate penalty.
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Case 1, free final angle for rotation reversal maneuver.




8 8 8 o
&
3
1 ¥
-
o
=
39
o
o
[$4
3 2 g
°
m 3
d 1 o
i 1= —
<
. c
s [}
% (=¥
&0
( b=
-r{
o
pes |
o © —
-] o .& © w w (-] 8 ° m
b R
N) INOWOL T0EANCD w.4) INCHOL TOMINGD  §
19/59% ALIDOTIA WV INDNY ACO® QiDiY DVONIIY D118V13 %X e
; s 8 s Y g S
=
bal
\ \ .
(44
g
$4
o
Y
1 93
2 m = 2
m 3 =
» b 3 -
E 3 o ~
T
Q
)]
]
]
: t
; ©
(-] (-] [-] -3
m [ o ”. ° e m © m - r3 - m
m - : . G
m 95 VDNV MIANINVIN ) FONLTINY IC0M 134 ) IOOLITPY 200N ONODIIS W) NOILD3 T30 dIL ol
. $ze
i
4
G o 5 At T T gt SRt ek g s S OB PN S and U.uu..




. 013

ANGULAR VELOCITY (il

MANEUVER ANGLE ined)

TItE (e 0 [} TiME L

N/

0 TIMEN ©

&
£

TIP DEFLECTION im}
o

FIRSY MODE AMPLITUDE (m)
(-3

8

§

SECONG MODE AMPLITUDE (m)

g

Figure 8-6. Case 3, performance index including higher-order time derivatives
of the controls.
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(a)

Case &, free final angle rotation reversal maneuver with control
rate penalties in the performance index.
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8.6.4 Case 5 (Figures 8-10 through 8-14)

Case 5 is a 5-second, 5-degree, rest-to-rest maneuver of the ACOSS
HModel 2 about the z axis. The maneuver is simulated for 7 seconds in order
to ohserve the regidual vibrations. The formulation of Section 8.3 is used
with the performance index penializing the state, control, and first and
second time derivatives of the control. The first two antisymmetric modes,
Modes 10 and 11, are controlled with-the others uncontrolled. The results
show that the sysmetric modes are only slightly excited. Mode 7, which is a
vibration in the x-z plane, and Mode 8§, which is a symmetric vibration in
the x-y plane, are excited only slightly. Modes 9, 12, and 18, which are
mainly vibrations in the x-z plane with some aatisymmetric components on the
x-y plare, are excited somewhat more than Modes 7 and 8 because of the
antisymmetri ., component.

Modes 12 and 18 have small amplitude residual ringing at the end of
the meneuver, but Mode 9 has a relatively large amplitude at the terminal
time. Modes 10 and 11, which are the controlled antisymmetric modes, are
excited but are forced to have essentially zero amplitude at the end of the
maneuver, as expected. Mode 15, which is a twisting of the soliar panels, is
hardiy excited. Mode 17, which is purely antisymmetric in the =~y plane, is
excited, but the amplitude is greatly reduced at the terminal time with
small amplitude residual ringing. The large residual amplitude of Mode 9
suggests that it should be controlled in future simulations,
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SECTION 9

ORDER REDUCTION BY IDENTIFICATION—
SOME ANALYTICAL RESULTS

9.1 Introduction

Considerable attention in the community studying large space structures
(LSS) has been devoted to the design of (stable) controllers. The major dif-
ficulties encountered are the dimensionality problem and the spillover prob-
lem. Various devices have been suggested to overcome these difficulties.
Roughly speaking, the common philosophy of all the designs is: select n domi-
nant modes (n relatively small), design a controller for the n modes while
preventing (or minimizing) the spillover effect. Although this is a plausible
philosophy, it suffers from a major flaw: the success of the corresponding
design depends on knowledge of a precise high-order model., Thus, the burden
of dealing with a high-order model is transformed from a control design prob-
lem to a modeling problem. Unfortunately, the identification of high-order
models is even nore imperilled with numerical difficulties than controlling
such systems. Thus, it seems that a compromise between these difficulties is
imminent, Actually, such a compromise is practiced regularly by engineers as
follows:

(1) A model structure is selected (e.g., linear of order n).

(2) Using experimental data, the best model of thc selected structure
is estimated.

(3) A controller is designed for the "best model".

(4) The performance of the controller when applied to the plant is
tested,

Although a common practice, no proof exists that such a scheme will work, ex-
cept for Step (4). The purpose of this section is to evaluate the feasibility
of this approach theoretically. Specifically, an attempt is made to charac-
terize control designs that will guarantee stability despite the order reduc-
tion induced by the identification. Since the least squares (LS) method is
one of the more robust identification schemes, and since analytical expres-
sions for order reduction exist for the LS, this method is analyzed herein.

Section 9.2 discusses general properties of LS idemntification, espe-
cially those pertaining to order reduction. A general stability theorem for
the discrete-~time system and its relation to LS is presented subsequently.

Sections 9.3 and 9.4 characterize controllers which are stable when de~
signed based on reduced-order models. It is shown that stability enhancing
controilers (i.e., controllers which increase damping) are robust when applied
to systems with reduced-order models., In the last section conclusions are
drawn and extensions are outlined.
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Nomenclature

All vectors are denoted by underlined lower case letters, e.g., X, 3,
n

The jth entry of X is xj.
Matrices and operators are denoted by capital letters, e.g., Pn, X, E, J

The dimensions of the matrices (operators) are not specified if they can
be deduced from the context.

9.2 Least-Squares ldentification

To facilitate the analysis of the subsequent section, we present first
some basic results in LS theory.

Let {50,54,...} be a set of vectors in a Hilbert space H.
Let
A
Ln = Span {54,...,§ﬂ}

and

>
=
ne>

A .
24 P X, * projection of x5 on L (9-1)

i=1 't
Then the following results:
Result 9-1
n+l
“n+l “n+l ,
N izl ay X (9-2)
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atl _ "n _ Tntl . -
a; 8] = dn.) %ul,i 0 b l,...,n (9-3)
where
n
Pr¥ael = _z %ae1,1%4
i=l
o= et - .z b -
and where 3 4 X4 18 the projection of Xy on X 13 Xoe X+l Pn50+1°

Result 9-1 is best illustrated as shown in Figure 9-1.

Figure 9-1,

The algebraic relations which correspond to Result 9-1 can be expressed
as follows

= T ~1,T -
P X, xn(xnxn) xn§0 (9-4)
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where

Xn ts the matrix

x |

X = [54,54,...,_ﬂ

and the superscript T denotes the transpose operation., Defining the vector

Panq
1
An _
a = :
“n
a
L n_
and the truncation operator E
X Xy
Ex = e[| 2 |
*n *a-1
we have
“n+l _ (=T = -1 =T -
ol = Ban 2 ) Rk (9-3)
n+l o Catl T, -1 T _
B an KT X ©-0

The application of Eq. (9-5) and (9-6) results in the system identi-
fication theory as follows. Let

m
y biulk = 1) + w(k) (9-7)

n
y(k) = ¥ a;y(k - i) +
i=1 i=0

be an (n,m) ARIMA model to be identified, where {y()}, {u()}, and {w()} are
output, 1nput, and noise (residuals) sequences, respectively. Define
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Ty(n - 1)

X = . i= 0,50.,“
y(N - 1)

[ w(2n + 1 - 1)
X = i’n""l’ooo,n""m
Lu(N +n+1-1)

where N is the length of the data,

The LS estimate of the (n,m) ARIMA model can be transformed to the
(n + 1,m) or the (n,m + 1) order ARIMA mo.lel using the relations above.

Assuming that the number of unstable poles is known and choosing n
larger than that number, it can be shown [9~1] that the unstable modes can be
identified exactly using the LS algorithm. Thus, in the sequel, only the ef-
fect of order reduction on stationary (stable) systems is considered.

In the stationary case, assume that N is large enough such that

N

%kiz y)ytk - 2) = Ely(y(k - )] = v(2) (9-8)

Thus, the LS identification of the (n,0) model is given by the last column of

Vm1 where
n

Vn = Toep [v(0),v(1),eae,v(n)]

[v(0) v(1) es v(n)]
N

~
v(l) v(0) N
N

N
A . AN
= . \\ \\ \\ (9-9)
. \\ N
N \\\\
L v(n) N N

It follows from the Toeplitz structure of Vn that the relation in Result 9~}

can be written as
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b
&
1
A
:
j
- L ‘?
T _ o+l o )
N - n+! — j
R (9-10)
“n+l
n+i
he -d
where
0 1
vt
1" 0
i.e.,
X) X .
J ] = |
L3 Xy
Equation (9-10) is the basis fo. the celebrated lattice structure of stable
systems (see, e.g., [9-2]). Note that b
at o= _ 1 [Ean+1 + a"lEa n+ﬁ (9-11)
— = — n+l" -
(an+l)2
n+l
The intimate relation between Vn, 3?, and stability theory has been
discussed in a number of articles [9-3, 9-4, 9-5] and is summarized in Theo-
rem 9-1,
Theorem 9-1
Statements (1) through (5) regarding the polynomial Q
n g n-1
P(z) = 2 - ] az
n A
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and the corresponding companion matrix

por -
0

. 1

0

A = i N e Y

[
n 2

4 -

are equivalent.

(1 Pn(z) = det[zl - A] has its roots inside the unit circle,

(2) The Toeplitz matrix sclution of the Ricatti 2quation

T

AVnA + (0...01} = v

un

- D see O

|9

is positive definite.

(3) M,, defined in Eq. (9-13) is positive definite

l\\\\ 0 l\\ -alx\ a
A "8y ~ 0o -a
M = ~N N N ~N
n ~ ~ ‘\\\
"an . "'al \ l \1
0\ 0 0\ “8n * e 81
-a \ \
~ SO N
\\\ ~ 0 ~
-a, -a, ~0 0
- T _ T
AjA) = Ak
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]

(4) The Schur-Cohn matrix SC,, defined below, is positive definite

) I - 0 1 ~ _al _an—l
A -a -~ ~ ~ ~
SC = ™~ ~ ~
n ~~ ~ ~
~~ S~ ~ ~ ~w
-3 -a, 1 0

~ a ~

(5) Let a ,'52,...,3? be the LS parameter vectors of the first to
the n'" order AR models obtained from the stationary data {y(i)}.

then ';2' <1, 1 =1,...,n,

(6) Let 3?, 2?-1,...,3} be a set of vectors obtained using Eq. (9-10)

and (9-11) repeatedly. Then, |a;| <1l,i=1,...,0.

Theorem 9-1 shall serve in assessing the effect of order reduction on
the stability of a feedback design,

Note in particular that if Pn(z) is stable, Vn of Statement 2 and M;l of

Statement 3 are identical to the covariance matrix of the (n,0) ARIMA model
excited by unit variance white noise. The main benefits in the stability
statements of the theorem above are that they tie stability to model reduction
and LS estimation and that explicit expressions (the matrices M or Vn) to be

used in stability analysis are given in terms of the mcdel parameters (as op-

posed to the implicit Lyapunov conditions). These features will be exploited
in the following analysis.

9.3 Second-Order System

In this section, we shall consider the effect of designing a stable
feedback for a second-order plant when the designer assumes a model of order

one., This simple case will give some insight into the more general case to be
addressed in Section 9.4.

Consider the stable (2,1) system

y(k) = afy(k -1 + agy(k - 2) + u(k) (9-14)
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modeled by the first~order model (obtained through LS identification)
y) = aly(k - D + u(k) (9-15)

By the previous discussion

and lail <1, Ia%l <1 by assumption, Consider the feedback
_ 1
u(k) = -paly(k - 1)
A stable design restricts p to satisfy

1 .
|t -p| < — (9-16)

However, to guarantee closed-loop stability of the plant, we must satisfy

5 - b3
2. Ll
1 - 82
2
or equivalently
2
1 -a
|1-a§-p| <-.-12 (9-17)
|1

The constraints, Eq. (9-16) and (9~17), are plotted in Figure 9-2.
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Figure 9-2,

It follows that for a§ < 0, any control law that satisfies Eg. (9-i6) is
stable when applied to the full-order plaat. I1f a% > 0, there exist nop #0

for which stability can be guaranteed. Note that if Al’ Az are the plant

eigenvalues, ag = -AIAZ. Thus, ag >0 only if Alkz < 0, which is possible
only if both eigenvalues are real and sign (Al) = -sign(kz). The failure to

guarantee stability using a reduced order model of such a system is not sur-
prising. We note that the result above is also applicable in the case of a

second~order system with one unstable mode, say Xi, and where ai = Al. This

discussion is summarized in Lemma 9-1.

Lemma 9-1

Let Eq. (9-14) be the system equation and Eq. (9-15) be a model obtained
from Eq. (9-14) by LS definition. Then, the feedback u(k) = By(k - 1), satis-

fying Ia} + B' <1, is stable if ag <0.

Converse ly, there always exists a% > 0 such that this feedback is

unstable.
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Note in particular that for =1 > a% <0 and lail <1, 0 < p <2 guaran-

tees stability, and that ai(l - p)' < lai' in this case. We shall refer to

such a control law as stability enhancing control (see Definition 9-2 in Sec~-
tion 9.4).

It is reasonable to assume that the analysis of the residual energy wili

provide tighter bounds on |a§| thus allowing for a more judicial choice of p
to acconmodate a§ > 0. 1In particular, note thzt for 0 < p < 1, stabilicy is

, 1+ a - p)'ail
guaranteed if -1 < a, <

L+ fay]

9.4 nth Order Systems

In this section, the results of the previous section are generalized.
To enable this generalization, a few definitions and zelations nust first be
presented.

Definition 9-1:

0 ... O
s & L 9 (9-18)
0

0
‘xl 3
s . = | .
_xn ' K *n- 1]

Notation

The vector of coefficients in the polynomial Pn(z) of Theorem 9-1 will

be denoted by L i.e.,
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A= e sy e
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2

or equivalently, from Eq. (9-13)

i=0

> 0 ¥ xer"!

; y
x = fe-- eR*2 , XeR
.3

Then w- obtaln
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A, = s[Ja SJa ... s"Ja ]
—n —-n —n

By Theorem 9-1, P(z) is stable if and only if M > 0, i.e.

n . .
_’STM x = z [(Z‘_Tsl_% )2 R (XTSL+1J_(_X{I )2]

It follows that the matrices A, and A, defined in Eq. (9-13) satisfy

Moo= b (' ) e F - (s e )" 9 )T)
i=0

Let & ., be related to o via Eq. (9-10) and (9-11), and define
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LS

<1 as in Theorem 9-1, Finally, the fol-

n+l
Thus, Mn+l o+l

lowing concept is needed for the generalization of Sectiom %.3.

>0 if Mn > 0 and |a

Let V= Toep[vo,...,vn+1] be the solution of Eq. (9-12) corresponding

to S Consider the stable feedback law

T y(k - 1)
u{k) = Bn . (9-25)
y(k - n)

[

and define
Za . 1

and correspondingly, define Vn, §n(z), etc,

Definition 9--2: gn is said to be a stability enhancing control law if 6n S_Vn

or equivalently Mn Z_Mn.

Using the concept in Definition 9-2, the main result of this study is
obtained,

Theorem 9-2

Let o ., and a be related via Eq. (9-10U) and (9-11), Let 8 be a sta-

bility enhancing control, designed for the system a . Then the control law,

Eq. (9-25), is stable when applied to the system 5&:: if it satisfies ¥ xeR
n
n+l,2, T n+l T i+l - T 1
(1-(ap))7) x4 x+ 20 izo ((x's™ e )(x'sa,)

- <1 - (azzi)z)un + a::} R x>0 (9-26)
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Remarks
0

1 é. tn Eq. (9-26) can be replaced by | B |.
n n

(2) The matrix Rn is, in general, nondefinite. However, the sign

definiteness of - (an+l)2 M_+ a™!R as a function of the
a+l n n+ln

+ . . . L
value of ag+i can be established for a given choice of stability

enhancing coatrol,

(3) Forn=1, it is easily verified that Eq. (9-26) implies -1 £ a%

< 0, which is consistent with Lemma 9-1,

n+l 2 n+l ..+l s
(4) Note that [ (an+1)‘]Mn *a R, M asa . -0, which is con

sistent with reasoning,

(5) The proof of the theorem is obtained by using Eq. (9-10), (9-11),
and (9-12); the notion of stability enhancing control and using
the identities

s = [iTo]; st = xFstua

9.5 Conclusiqﬂi

The effect of order reduction on the stability of feedback design has
been addressed. The assumption made was that the reduction of order is based
on the results of system identification rather than on analytical reduction of
known full-order systems.

The stability analysis was based on the relation between LS estimation
and stability theory. Sufficient conditions for a "stability enhancing
controller" to be stable when applied to a full-order system have been
established,

This chapter presents only a first stab at understanding the effect of
model reduction induced by identification on stability, The generalization of
Theorem 9-2 to an arbitrary difference in orders between the model and the
plant yields similar conditions to that of Eg. {9-26). However, explicit
constraints on the ignored parameters are cluttered by the algebra, Further
studies are necessary to alleviate this algebraic problem,
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In the discussion, it was assumed that the ignored parameter a::i is ab-
solutely bounded by one. Actually, one should expect that, by choosing n suf-
n+l
n+l
to the energy in the residual sequence). Such an analysis in the time domain
is analogous to the often used assunption of poor knowledge of the frequency
response of a plant in the high-frequency range (see e.g., [9-6]).

ficiently large, tighter bounds on a::i can be found (e.g., by relating a

The results presented in this section are the first to give theoretical
justification to a common practice. osuccess of simplified modeling has been
reported in various fields (e.g., power generation, which is very similar to
LSS in its characteristics [9-7]). 1t is our intention to demonstrate the
practicality of this approach on Draper Model #2 in the near future.
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